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Assumed background:

For lack of time, we assume that the following
concepts are known:

• the spaces X1 and X−1.
• system nodes
• well-posed system (nodes)
• boundary control systems



Classical solutions of abstract linear equations

Let U, X , Y be Hilbert spaces. Let A : D(A)→X be the
generator of a strongly continuous semigroup T on X . Let
B ∈ L(U, X−1), C ∈ L(X1, Y ), D ∈ L(U, Y ) and define

Z = X1 + (βI − A)−1BU .

Assume that C has a continuous extension top Z . Then the
operator

S =

[
A B
C D

]

defined for those [ x
v ] for which Ax + Bv ∈ X , is a compatible

system node on U, X and Y . A is called the semigroup
generator of S, B is the control operator of S and C is the
observation operator of S.



The transfer function of S is the L(U, Y )-valued analytic
function

G(s) = C(sI − A)−1B + D ∀ s ∈ ρ(A) .

The system node S is usually associated with the equation
[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
∀ t ≥ 0 , (1)

or equivalently, for all t ≥ 0,

ẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) + Du(t) .



A triple (x , u, y) is called a classical solution of (1) on [0,∞) if
(a) x ∈ C1([0,∞); X ),
(b) u ∈ C([0,∞); U), y ∈ C([0,∞); Y ),
(c)

[
x(t)
u(t)

]
∈ D(S) for all t ≥ 0,

(d) (1) holds for all t ≥ 0.
The following proposition guarantees that for a system node,
we have plenty of classical solutions of the system equation (1).
Proposition. Let S be a system node on (U, X , Y ). If
u ∈ C2([0,∞); U) and

[
x0

u(0)

]
∈ D(S) , then the equation (1) has

a unique classical solution (x , u, y) satisfying x(0) = x0.
Moreover, this classical solution satisfies

x ∈ C2([0,∞); X−1) .



Scattering passive systems

The system node S is called scattering passive if all the
classical solutions of (1) satisfy

d
dt
‖x(t)‖2 ≤ ‖u(t)‖2 − ‖y(t)‖2 ∀ t ≥ 0 .

An equivalent condition is that

‖x(τ)‖2+

∫ τ

0
‖y(t)‖2 dt ≤ ‖x(0)‖2+

∫ τ

0
‖u(t)‖2 dt ∀ t ≥ 0 .

The system node S is called scattering energy preserving if the
power balance equation

d
dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 ∀ t ≥ 0

holds for all classical solutions of (1).



The dual of a system node S on (U, X , Y ) is its adjoint S∗,
which is a system node on (Y , X , U). The semigroup generator
Ad , the control operators Bd , the observation operator Cd and
transfer functions Gd of the dual system node S∗ are given by

Ad = A∗ , Bd = C∗ , Cd = B∗ , Gd(s) = G(s)∗ .

The system node S is called scattering conservative if both S
and S∗ are scattering energy preserving.
Any scattering passive system is well-posed, meaning that for
some (hence, for every) τ > 0 there exists Kτ ≥ 0 such that for
any classical solution of (1),

‖x(τ)‖2 + ‖y‖2
L2[0,τ ] ≤ Kτ

(
‖x(0)‖2 + ‖u‖2

L2[0,τ ]

)
.

Indeed, for scattering passive systems we have Kτ = 1.
Any well-posed system is a compatible system node.



Our aim
It is not easy to establish that a system is scattering passive (or
conservative). (Algebraic conditions for conservative systems
were derived by J. Malinen, O. Staffans and G. Weiss in 2006.)
It is of interest to identify large classes of systems where the
operators A, B, C, D have a special structure observed in
models of mathematical physics, which implies that the system
is scattering passive or conservative. Such a special class of
conservative systems (“from thin air”) has been introduced in
two papers by M. Tucsnak and G. Weiss in 2003. A special
class of systems described by several first order PDEs in one
space dimension has been studied by H. Zwart, Y. Le Gorrec,
B. Maschke and J. Villegas, about 2006-2009.
In a paper in preparation we (GW and OS) give a larger special
class, that includes “thin air” systems. We were led to introduce
this class by our failure to fit Maxwell’s equations into the “thin
air” framework. The new class of systems is also more flexible
for allowing time-varying and nonlinear extensions.



The new special class of passive systems
We consider a linear system Σ with state space X = H ⊕ E ,
where H and E are Hilbert spaces. The Hilbert space U is both
the input space and the output space of Σ. We identify H, E
and U with their duals. The Hilbert space E0 is a dense
subspace of E and the embedding E0 ↪→ E is continuous. We
denote by E ′

0 the dual of E0 with respect to the pivot space E ,
so that

E0 ⊂ E ⊂ E ′
0 ,

densely and with continuous embeddings. We denote
X0 = H ⊕ E0, so that X ′

0 = H ⊕ E ′
0. We assume that

L ∈ L(E0, H) , K ∈ L(E0, U) , G ∈ L(E0, E ′
0),

Re 〈Gw0 , w0〉E ′0,E0
≤ 0 ∀ w0 ∈ E0 ,

and we define A ∈ L(X0, X ′
0), B ∈ L(U, X ′

0) and C ∈ L(X0, U) by

A =

[
0 −L
L∗ G − 1

2K ∗K

]
, B =

[
0

K ∗

]
, C =

[
0 −K

]
.



The equations of the system are (as at (1))

ẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) + u(t) , (2)

where x is the state trajectory, u is the input function and y is
the output function. Note that the differential equation above is
an equation in X ′

0. We define the domain D(A) by

D(A) = {x0 ∈ X0 | Ax0 ∈ X}

and we denote by A and C the restrictions of A and C to D(A).
More explicitly,

D(A) =

{[
z0

w0

]
∈ X0

∣∣∣∣ L∗z0 +
(
G − 1

2K ∗K
)
w0 ∈ E

}
.

We assume that
[

L
K

]
(with domain E0) is closed as an

unbounded operator E → H ⊕U. This implies that A is maximal
dissipative and hence it generates a semigroup of contractions.



Main abstract result

Under the above assumptions, the equations (2) determine a
scattering passive system node with state space X = H ⊕ E
and input and output space U. This system node is scattering
conservative if and only if

Re 〈Gw0 , w0〉E ′0,E0
= 0 ∀ w0 ∈ E0 .

This syste node is

Ssca =

[
A B
C I

]

with the domain D(Ssca) given by







z0

w0

u0


 ∈ H × E0 × U

∣∣∣∣ L∗z0 +
(
G − 1

2K ∗K
)
w0 + K ∗u0 ∈ E



 .



Proposition about classical solutions
We use the notation and the assumptions of the main result. If
the input function u and the initial state

[
z(0)
w(0)

]
of Ssca satisfy

u ∈ H1
loc((0,∞); U) ,




z(0)
w(0)
u(0)


 ∈ D(Ssca) , (3)

then the corresponding state trajectory [ z
w ] and output function

y of Ssca satisfy y ∈ H1
loc((0,∞); Y ),

[
z
w

]
∈ C1([0,∞); H ⊕ E) ,




z
w
u


 ∈ C([0,∞);D(Ssca)) ,

and 


ż(t)
ẇ(t)
y(t)


 = Ssca




z(t)
w(t)
u(t)


 ∀ t > 0 .



Power balance formula

We use the notation and the assumptions of the main result. If
the functions u, x = [ z

w ] and y are a classical solution of



ż(t)
ẇ(t)
y(t)


 = Ssca




z(t)
w(t)
u(t)


 ∀ t > 0 ,

then the following power balance equation holds for t ≥ 0:

d
dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 + 2Re 〈Gw(t), w(t)〉 .

The dual system node S∗sca has the same structure, but with
L, K and G replaced with −L,−K and G∗. Therefore, its
classical solutions satisfy the same power balance equation.
(Hence, as already mentioned, Ssca is scattering conservative if
and only if Re 〈Gw0 , w0〉 = 0 for all w0 ∈ E0.)



The transfer function of Ssca is

G(s) = I − K
[
sI +

1
2

K ∗K −G +
1
s

L∗L
]−1

K ∗ ,

for all s in the open right half-plane.


