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2x2 Hyperbolic Quasi-Linear PDEs

2+ Nz X)zx+ f(z,x) =0,

x € [0,1], where z: [0,1] x [0,00) — R, A : R?x [0,1] — Mo o(R), T R? x [0,1] — R?.
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2x2 Hyperbolic Quasi-Linear PDEs

2+ Nz X)zx+ f(z,x) =0,

x € [0,1], where z: [0,1] x [0,00) - R% A : R2x [0,1] — M2 2(R), f : RZx[0,1] — R?,

Consider w.l.o.
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A1(x) and Ay(X) are the speeds of propagation of z= [z1 z5] . According to their signs:

homodirectional heterodirectional
VX e [0, 1], /\1(X)/\2(X) >0 | Wxe [0, 1], /\1(X)/\2(X) <0

Heterodirectional — one boundary condition on each side.

Homodirectional — two boundary conditions on the same side.



Examples of Homo directional Systems

road traffic: Aw-Rascle model

heat exchanger

plug-flow chemical reactor

population dynamics (Lotka-Volterra) in laser chambers



Examples of Hetero directional Systems

e Saint-Venant model of water waves in a channel

e gas flow in pipes

e cardiovascular flow in flexible blood vessels



The control problem (hetero case)

with boundary conditions

Z]_(O,t) — qZZ(Oat) ) q#0
2>(1,t) = U(t) = actuation
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Assume f(0,x) = 0 (equilibrium at the origin)

Task: find fbk law for U (t) to make z= 0 locally exponentially stable



The control problem (hetero case)

with boundary conditions

Z]_(O,t) — qZZ(Oat) ) q#0
2>(1,t) = U(t) = actuation

Assume f(0,x) = 0 (equilibrium at the origin)

Task: find fbk law for U (t) to make z= 0 locally exponentially stable

Approach: (1) Stabilize linearized system using backstepping
(2) Prove local stability for nonlinear system



The linear case

Ui = — &1(X)ux+Cp(X)V
= €2(X)vx+Ca(X)u

xe[0,1], €1(x),e2(x) >0

with boundary conditions

u(t,0) = qgvt,0)
v(t,1) = U(t)



Key Issue

u(x,t)
—>| u-PDE

v-PDE |[€——

v(x,1)

A continuum of 1st-order (in time) subsystems with (potentially) positive feedback
coupling and small gain condition violated.



Target system

ar = —&1(X)0x

€2(X)Bx

&
|

with boundary conditions

a(t,0) = qB(t,0)

Feedback connection severed throughout the domain, using control only at one boundary.

Cascade of two exp. stable transport PDEs (p — Q).



Backstepping transformation

altx) = utx)— [ KUx Ut EdE— [ KVt E)dE
BtX) = vitn) — [ KU EUEEE -~ [ KX Ut E)d



Backstepping transformation

altx) = utx)— [ KUx Ut EdE— [ KVt E)dE
BtX) = vitn) — [ KU EUEEE -~ [ KX Ut E)d

Control law  (set B(t,1) = 0)

U= [ KM EdE + [ KYLEVLE)de



Kernel PDEs

First, for KUY and KYV:

(8100 + £2(6)0g | KU = —¢4 (&K~ co(E)K™
(81(X)ax— 82({)65) KU _— eé(E)Kuv_ C]_(E)Kuu,

with boundary conditions

_ 80

0e1(0)
C1(X)

£1(X) +€2(X)’

KHY4(x,0) KYY(x,0)

KYW(x,x)




Kernel PDEs

First, for KYY and KYV:

(8100 + £2(6)0g | KU = —¢4 (&K~ co(E)K™
(81(X)ax— 82({)65) KU _— eé(E)Kuv_ C]_(E)Kuu,

with boundary conditions

uu £2(0) , uv
uv C1(X)
) €1(X) +€2(X)

A 2 x 2 system of first-order linear hyperbolic PDE that evolves in the triangular domain
T ={(x§):0<& <x<1}.



Second, for K¥Yand KVYV:

(sz(x)6x+£2(2)65) KW —

(ez(x)ax— el(z)aa) KV

with boundary conditions




Second, for KY¥and KYV:
(£2000x+£2(8)0g | KW = —e5(E)K™ -+ cr(E)K,
(82(00x— £2(8)0g ) K™ = €1 (E)K™+ co(§)K™,

with boundary conditions

KY(x,0) ?(O)KVU(X, 0)
vu C2(X)
X = 0 e

Uncoupled with the previous PDE.



Linear example: constant coefficients

Benchmark system
U +Ux = WV
Vi—Vx = U
with boundary conditions u(t,0) = gqv(t,0), v(t,1) = U(t)
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Vit = Vxx+ WAV

Open-loop unstable for large w.



Linear example: constant coefficients

Benchmark system

U +Ux = WV
Vi—Vyx = WU

with boundary conditions u(t,0) = gqv(t,0), v(t,1) = U(t)

This 2 x 2 converts into one wave PDE with “anti-stiffness”

Vit = Vxx+ WAV

Open-loop unstable for large w.

For large enough w no choices of k1, ko in static output fbk law U = kqu(t,0) + kou(t, 1)
can achieve stability.

Recall the backstepping controller

U(t) = /01 K™(1,§)u(t, §)d& + /01 K™(1,&)v(t,€)dE



Control gain kernel KY¥(1,€) for g=0.5and w = 1-10

KM

104 C

1000 £

100




Control gain kernel K¥V(1,&) for = 0.5and w= 1-10
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Note the log scale. The growth in (W0 seems exponential.

Control v(t, 1) puts a strong emphasis on u(t,0.2) and v(t,0.3) — highly non-collocated!



Inverse backstepping transformation
X X
utn) = atx+ [ L xEatEde+ [ LPxEB(EE)E,
OX 0X
vitx) = B+ [ LP Bt E)d+ [ L8R8,

One gets again four PDEs:

(sl(x)aersl(E)aE) OO = gl (8)LOY 4 ¢y (x)LPY,
(1000x—£2(8)0 ) L = ep(E)L®P+cr (0L,
(s200x—€1(8)0g ) LPT = &}(§)LP — ()L
(82(x)ax+82(2)05) PR = el (&)LPP — cp(x)LOP
with boundary conditions
LGO((X O) - 82(0) LGB(X O) LO(B(X X): Cl(x)
’ ge1(0) o e (X) +ea(X)
Bowy = 22X ey gy = %100 pagy g




Kernel well-posedness

Consider the following “generalized Goursat problem” of which the direct and inverse ker-
nel equations are a particular case:

(e1(009x-+ 289 | F* = gl<x,a>+§1<:1i<x,z>F‘<x,a>,
(1(00x— £2(8)05 ) F? = g2(x.&) +Iflcz.<x §)F!(x,8),
( (X)9y — £1(E aE)F3 ga(%, ) +§1C3,(x Fi(x,8),
( (X)9x+ €2(& az) F4 — ga(x,§) +§1c4, (%, E)FI(x,8),

with boundary conditions
F(x,0) = h1(X) +qu(X)F “(x,0) + a2(X)F °(x,0),
F2(x,%) = ha(x),  F3(xx)=hg(x),
F4(%,0) = ha(X) + a3(X)F *(x,0) + aa(X)F >(x,0).
evolving in the domain 7 = {(x,§) : 0 < & <x<1}.



Transforming the PDEs into integral equations along the characteristic lines, and using the
method of successive approximations, we prove:



Transforming the PDEs into integral equations along the characteristic lines, and using the
method of successive approximations, we prove:

Theorem Under the assumptions

gi.hi € c([0,1]), ¢.Cjicc(T), i,j=1,23,4

and €1,€5 € €([0,1]) with £1(X),€2(x) > O, there exists a unique ¢ (7 ) solution F', | =
1,2,3,4.



Transforming the PDEs into integral equations along the characteristic lines, and using the
method of successive approximations, we prove:

Theorem Under the assumptions

di,hi € c([0,1)), ¢,Cjiec(T), i,j=1234
and €1,€5 € €([0,1]) with £1(X),€2(x) > O, there exists a unique ¢ (7 ) solution F', | =
1.2.3.4

Theorem Under the additional assumptions

&, qi,h € cN((0,1), 6.CjiecNT),

there exists a unique ¢N(7) solution Fli=1234



An observer-based controller with sensing of  u(1,t)

l,j'[ — _810X+ C]_(X)\’}— elpuu(xa 1) (U(t, 1) o O(ta 1))
G = exl+Ca(x)a—erPY(x. 1) (u(t, 1) — d(t, 1))
att,.0) = qu(t,0)

ot,1) = U
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An observer-based controller with sensing of  u(1,t)

b = _810X+ C]_(X)\’}— elpuu(xa 1) (U(t, 1) o O(ta 1))
G = exl+Ca(x)a—erPY(x. 1) (u(t, 1) — d(t, 1))
at,0) = qv(t,0)

1
0t,1) = U /Wuauwaﬁw%mm@&

Observer gains obtained from

(el(x)derel(E)ag)PU“ — _g&(E)PUU C()Pvu
Co(X

(82(X)ax_51(z.)a§) pu = g’l(E)PVU+ )Puu
uu — qpWu VU . Cz(X)
P08 = AR08, P = e e
(e2(X)0x— £2(E)0g) P ()P ¢y (x) P
(82(X)0x +€2(8)0g) PV = —€5(&)P™+co(x)PW
W _} uv uv Cl(X)
P"(0,¢) = qP (0,8), PYW(x,x) = 0 + 6200



Back to the Nonlinear Case

z+N\(z,X)zx+ f(z,x) =0

Zl(ovt) — qZZ(Ovt)v 22(17t) =U (t)

Consider only the state-fbk problem here, but output-fbk also possible.



Back to the Nonlinear Case

z+N\(z,X)zx+ f(z,x) =0

Z]_(O,t) — qu(O,t), 22(17t) =U (t)

Consider only the state-fbk problem here, but output-fok also possible.

Compute

_ [ f11(x) f12(x) ]
=0

fo1(x)  f22(X)

Define

o - o [ 120

020 = exp(— /ojfj;)ds)




In re-scaled variables



In re-scaled variables

the system is

\ .

design bks contr for this syst

where

(x) = —A0,x) = | "

nonlinear perturbations

0 —Aax ] - C= [ —(1321

Wt — 2 (X)Wx —C(X)W  +ANL(W, X)Wy + iy (W, X) =0



In re-scaled variables

the system is

Wt — 2 (X)Wx —C(X)W  +ANL(W, X)Wy + iy (W, X) =0

N\

design bks contr for this syst nonlinear pgrturbations

where

Z(X)Z—’\(O’X):[ 0 —/\z(x)]’ C(X):[—(f)ﬂ _‘];12]

Control law in z variables:
1 KVV(l, E)
d2(§)

1 KVU(]_,E)

0 $1() 28 0k

U = (|)2(1) Zl(Eat)dE‘|‘¢2(1) 0



Proof of stability

For linear problem, exp stability in L.
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Direct and inverse bkst transforms applied to obtain the system + perturbation term in
target variables.



Proof of stability
For linear problem, exp stability in L.
For nonlinear case, local exp stability in Ho.

Proof is involved. Needs a careful selection of Lyapunov functions (complications due to
the AnL(W, X)Wy term).

Direct and inverse bkst transforms applied to obtain the system + perturbation term in
target variables.

To go to H1 and Ho, take t-derivatives instead of X-derivatives to simplify the process.



L- analysis step

System written in target variables y = |a B]T

—2(X)yx + Rly,w+FRly] =0,

A

linear stable part nonlinear perturbation

F3 and F4 are functionals in terms of backstepping kernels. Boundary conditions:

G(Ovt) — QB(O,t)
B(L,t) = O



L- analysis step

System written in target variables y = |a B]T

—2(X)yx + Rly,w+FRly] =0,

A

linear stable part nonlinear perturbation

F3 and F4 are functionals in terms of backstepping kernels. Boundary conditions:

G(Ovt) — QB(O,t)

Lyapunov function:
(1-x)
AE 0
U= / Wtdx D)= | Mk .
0 (qz)\le“Jr)\z) e

with Jl= A max,. 0,1] {All(x) : /\zl(x)} and choosing Aq,A2 > 0.




L- analysis step

System written in target variables y = |a B]T

—2(X)yx + Rly,w+FRly] =0,

A

linear stable part nonlinear perturbation

F3 and F4 are functionals in terms of backstepping kernels. Boundary conditions:

G(Ovt) — QB(O,t)

B(Lt) = 0
Lyapunov function:
(1-x)
AE 0
U= / Wtdx D)= | Mk
0 (zAle“Jr)\z) e

with t= A1 MaXc 0,1 {All(x),/\zl(x)} and choosing A1,A2 > 0. Then if ||| < &1

U < —MU—Az(a2<1,t>+52<o,t>)+clu3/2+cz||vXHoou,



Hq analysis step

Vit — Z(X)Vix  + FalYlVix + FslY, Yoo Wil + Fely, i) = O,
linear stable part nonlinear r?rerturbation




H4 analysis step

Vit — Z(X)Vix  + FalYlVix + FslY, Yoo Wil + Fely, i) = O,
linear stable part nonlinear r?rerturbation

Lyapunov function:

1
V= /0 W OCORMOO(t)dx  RYI(x) =D(x) + [

_ D11(X)(F1l¥]) 1o—D22(X) (F1[Y))
where WIY] = & 60 6100+ (51 ) 11— (i) op




Hj analysis step

Vit — Z(X)Vix  + FalYlVix + FslY, Yoo Wil + Fely, i) = O,
linear stable part nonlinear r?rerturbation

Lyapunov function:

1
V= /0 W OCORMOO(t)dx  RYI(x) =D(x) + [

where LlJM — 52<X)—|—81( ) (Fl[Y]) ( [YD

D110 (F1[YD15-D22(0)(F1l¥)21 ey if V][ < &2

Vo< AV - (0L ) + BE0.)) +CaV v



H> analysis

YVett — Z(X) Vet + Fa[YlVeex + F71Y, Yoo W Vi Vee] + Pl W, Wit = O,

linear stable part nonlinear perturbation




H> analysis

YVett — Z(X) Vet + Fa[YlVeex + F71Y, Yoo W Vi Vee] + Pl W, Wit = O,

linear stable part nonlinear perturbation

Lyapunov function:

W= [ VORI 00w (x tax



H> analysis

YVett — Z(X) Vet + Fa[YlVeex + F71Y, Yoo W Vi Vee] + Pl W, Wit = O,

linear stable part nonlinear perturbation

Lyapunov function:

1
W= [V O ORNI 0¥ (x )l
Then if [[Y]|eo + || Yt[[e0 < O3

W < —AgW—Ag (af(1,0) +BR(0,1) ) +CaW VA2 + Cov W2+ Caw®/2



To relate \, Vit and the Hq, H> norms of y use the following lemmas:
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To relate \, Vit and the Hq, H> norms of y use the following lemmas:

Lemma 1. If ||Y]|e < &4

IVtlleo < €1 (|| Yx[oo 4 [|Y]e0)
[¥xlleo < c3([|Vt][oo 4 [|Y]|e0)
vl 2 < ca(llwll 2+ 1Vl 2)
vl 2 < ca(livell 2+l 2)
Lemma 2. If ||Y][eo + |[Vt]|eo < &5
Wetlloo < 1 (J|Vxxlloo + | Vxlloo = || Y]] o)
Yixl[oo < C3 (|| Vit oo + ||Vt leo + || Vl|e0)
Vitll 2 < co (vl 2+ Il 2+ IVl 2)
IVl 2 < ca(llvtll 2+ [Ivell 2+ 1Vl 2)




The nonlinear result

Define Lyap. fcn.
S=U+V+W



The nonlinear result

Define Lyap. fcn.
S=U+V+W
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S< —\S+CSY?
for A\,C > 0.



The nonlinear result

Define Lyap. fcn.
S=U+V4+W
Combining previous results if [|Y||o + || Vt||co < ©
S< —AS+CSY?
for \,C > 0.

Noting [|Y]|e + ||Vt|lee < C7Sand that Sis equivalent to the HZ norm of y we obtain
Theorem [Vazquez, Coron, Krstic, 2011 CDC]

With the linear backstepping controller, 30, Mg, Yo > O such that

[WollH, < dg

4

IW(-,0) [, < Moe™ Y0 [wol 4, -



Summary

Backstepping removes restrictions that have plagued static output feedback designs for
hyperbolic 2 x 2 systems
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Summary

Backstepping removes restrictions that have plagued static output feedback designs for
hyperbolic 2 x 2 systems

In the nonlinear case, local stabilization in Ho

Interesting open problem: N x N systems (slugging flows in offshore oil rig risers)



