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z(t) = Az(t)+ u(t)b, z(0)= z,
y(t) = (2(t),¢).

O (H,(-, -)) Hilbert space,

Q@ A:dom A — H generator of a Cy-semigroup,
Q vell (RT,R),

o

bedom A" and c € dom A*
and

(A"1h,c)#0 andforj=0,1,...,r —2 we have (Ab,c) =0.
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Theorem
With respect to H = Is{c} + Is{A*c} + --- + Is{A*" "¢} + Hy:

x = (P°X)c + (P'x)A* c+ -+ + (P ')A "¢ + Ppyx,

where Px,... P""1: H — R (except for Py ) j = m+2,...,r

_— ((A*flc,Ar—(mH)b) Z -~ lc) (x, A7)

J (c, Ar—1p) Bl (c, Ar—1p)’
(X7Ar—(m+l .
PX::—(C,Af—lb Z P"x, m=0,....,r—1,
Jj=m+2
r—1

Prox = x — Z(PJX)A*jc.

Jj=0
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Set dom A := R’ x (Ho N'dom A) and define Ain R’ x Hy

0 1 0 0]
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A=
: : 1 0
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Qn = PtAn for n € HyNdom A.



Byrnes-Isidori form
Set dom A := R’ x (Ho N'dom A) and define Ain R’ x Hy

0 1 0 0]
~ 0 o 0 o0
A=1 : 1 0
POA* ¢ PlA*¢ ... Prlp¥c S
R o - 0 Q
Theorem
POx
U:H—R"x Hy, x— Ux = :
pPr—1lx
Pr,x

Then we have
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Rewrite the system
z(t) = Az(t) + u(t)b, y(t) = (z(t),c).

Set
use: AU* = U*A & (UH)*A =AU
We have
0
x = (U Y)z=(UY)Az+ (U ) bu=Ax+ 0 u,
(A™=1b, c)
0
1
0
y = (Z,C)—(U*X,C):(X, UC): X |-
0

Rrx Hyp
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Theorem
z=Az+ub, y=(z0c).
=
0 1 0 0]
0 0 0 0
X = : : 1 0
POA* ¢ PlA¥ ¢ P—1A*¢c S
R o .- 0 Q]
1
0
y = X, 1 .
0
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For a cont. differentiable bounded reference y,r let

u(t) = —k(t)sgn (b.c)e(t). k(1) = —dyagey o(t) = ¥(£) — e (2).
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u(t) = —k(£) sen (b, <) e(t). k(1) = yagay- &(t) = ¥(D) — yeerl

t).

G0) = & 210 (77) (o)~
y(t) = z1(t)
Theorem

Assume Ay is the generator of an exponentially stable semigroup
and y,f € WH(RT). The above system with Funnel control has
a global solution. Each global solution z and u, k are bounded.
For all t > 0 we have

e(t) € Fy.




Example: Heat equation

x=1
_ d?z(t)
z(t) = 2 T u(t)b, z(0) =z
dz(t) odz(t)
Ix (0) = F(O) =0,
y(t) =

(z(t), ©)r2(0,1)-

relative degree 1.

¢(x) =1, b smooth with compact support in (0,1). (b,c) #0, i.e.



Thank you.



