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Robustness

Robustness is a property that allows systems to maintain its
functions despite external and internal perturbations.
A system must be robust to function in unpredictable
environments using unreliable components.
Robustness is a fundamental feature of evolvable complex
systems.

Kitano: Biological Robustness, Nature (2004).
Sontag: Molecular Systems Biology and Control, European J.
Control (2009).
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Introduction

For linear finite-dimensional systems we have the Internal
Model Principle (IMP) by Francis and Wonham from the
1970’s: A stabilizing feedback controller solves the robust
output regulation problem if and only if it incorporates a
suitably reduplicated model (a p-copy) of the signal generator.
Regulation: Output will asymptotically track given reference
signals and reject given disturbance signals.
Robust Regulation: Regulation occurs despite perturbations in
the system’s parameters.
The purpose of this presentation is the generalization of the
IMP to infinite-dimensional systems.
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Previous work

Structurally stable synthesis (Bhat 1976). Finite dimensional
exosystem, mainly for time-delay systems.
Yamamoto and Hara (1988): frequency domain generalization
of the Internal Model Principle for systems having a
pseudorational impulse response.
Robust control: Logemann, Townley, Pohjolainen,
Hämäläinen.
Regulator theory without robustness: Schumacher (1983),
Byrnes et. al. (2000).
Internal model for infinite-dimensional systems Immonen
(2006,2007), Hämäläinen (2010), Paunonen (2010), jointly
with Pohjolainen.
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Plant, exosystem, and controller

The plant is described by the state-space equations

ẋ = Ax + Bu + Fsv, x(0) ∈ X
y = Cx + Du + Fmv,

where v is generated by the exosystem

v̇ = Sv, v(0) ∈W .

The controller is described by the equations

ż = G1z + G2e, z(0) ∈ Z
u = Kz,

where e = y − r = y − Frv.
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Assumptions

The state spaces X , W , and Z , the input space U and the
output space Y are Hilbert spaces.

A,S ,G1 generate C0-semigroups.

All other operators are bounded.

The pair (A,B) is exponentially stabilizable.

The pair (A,C ) is exponentially detectable.

σ(A) ∩ σ(S) = ∅ and the plant transfer function
P(s) = C (sI −A)−1B + D is a bijection for s ∈ σ(S).
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Standard form

The plant state and the tracking error e = y − r = y − Frv can
put into the standard form

ẋ = Ax + Bu + Ev, x(0) ∈ X
e = Cx + Du + Fv,

where E = Fs ∈ L(W ,X) and F = Fm − Fr ∈ L(W ,Y ).
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Closed Loop System

The closed loop system consists of the plant and the controller

ẋe = Aexe + Bev, xe(0) ∈ Xe

e = Cexe + Dev,

on the Hilbert space Xe = X × Z where

Ae =
[

A BK
G2C G1 + G2DK

]
, Be =

[
E
G2F

]
∈ L(W ,Xe).

with D(Ae) = D(A)×D(G1) and

Ce =
[
C DK

]
∈ L(Xe,Y ), De = F ∈ L(W ,Y )
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Output Regulation Problem

Definition
The controller (G1,G2,K ) solves the Output Regulation Problem
(ORP) if
(i) The closed-loop system operator Ae generates a

(strongly/weakly) stable C0-semigroup.
(ii) For all initial states xe(0) ∈ Xe and v(0) ∈W

lim
t→∞

e(t) = 0

either strongly or weakly.
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Dynamical steady-state operator Hss

Lemma

Suppose Hss ∈ L(W ,Xe) is an operator satisfying
HssD(S) ⊂ D(Ae). The following are equivalent:

(a) Hss satisfies the Sylvester equation

HssS −AeHss = Be on D(S). (1)

(b) For xe(0) ∈ Xe, v(0) ∈W the mild solution of the closed-loop
system can be written as

xe(t) = TAe(t)(xe(0)−Hssv(0)) + Hssv(t),

where v(t) = TS(t)v(0).
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Importance of the dynamical steady-state operator

The extended state decomposes into two parts

xe(t) = TAe(t)(xe(0)−Hssv(0)) + Hssv(t).

For stable Ae, as t →∞

xe(t) ≈ Hssv(t),
e(t) ≈ (CeHss + De)v(t).

Hence regulation = stabilization + tracking.
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Sylvester Equation =⇒ ORP

Theorem

If Ae generates a stable C0-semigroup and there exists an operator
Hss ∈ L(W ,Xe) which satisfies HssD(S) ⊂ D(Ae) and the
constrained Sylvester equation

HssS −AeHss = Be, on D(S) (2a)
CeHss + De = 0, (2b)

then the controller (G1,G2,K ) solves the ORP.
Equation (2b) is called the regulation constraint.
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Robust Output Regulation Problem (RORP)

Definition
The controller (G1,G2,K ) solves the Robust Output Regulation
Problem (RORP) if
(i) The controller solves the ORP.
(ii) (i) holds for a class of perturbations on the system

parameters (A,B,C ,D,E ,F).
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Robust Output Regulation Problem (RORP)

As

e(t) = CeTAe(t)(xe(0)−Hssv(0)) + (CeHss + De)TS(t)v(0)

the RORP is divided into two parts: Finding a controller that
(i) is robustly stabilizing
(ii) robustly satisfies the regulation constraint.
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Internal Model Structure

Definition

The controller (G1,G2,K ) has Internal Model Structure (IMS)
(Immonen), if for every Γ ∈ L(W ,Z ) and ∆ ∈ L(W ,Y ) with
ΓD(S) ⊂ D(G1) the following implication holds:

ΓS = G1Γ + G2∆ on D(S) =⇒ ∆ = 0. (3)
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Robust Regulation Constraint

Suppose that

Hss =
[
Π
Γ

]
.

satisfies the Sylvester equation HssS −AeHss = Be on D(S).

Now assume the system parameters (A,B,C ,D,E ,F) are
perturbed to (A,B,C ,D,E ,F) so that the perturbed Sylvester
equation HssS −AeHss = Be has the solution Hss. Then

ΠS = AΠ + BKΓ + E ,

ΓS = G1Γ + G2(CΠ + DKΓ + F).
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Robust Controller

If the controller has IMS, this implies that

CΠ + DKΓ + F = CeHss + De = 0.

Hence the perturbed regulation constraint is also satisfied.

Theorem

Assume that the controller has IMS. If Ae generates a
strongly/weakly (robustly) stable C0-semigroup and there exists an
operator Hss ∈ L(W ,Xe) satisfying HssD(S) ⊂ D(Ae) and the
Sylvester equation HssS −AeHss = Be on D(S), then the
controller solves the RORP.
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The exosystem

Suppose the exosystem is given by

Sv =
∞∑

n=−∞
iωn〈v, φn〉φn ,

with
D(S) =

{
v ∈W

∣∣∣ ∞∑
n=−∞

ω2
n |〈v, φn〉|2 <∞

}
(φn)n∈Z is an orthonormal basis of W and (iωn)n∈Z has no finite
accumulation points.
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The exosystem

S generates the C0-group

TS(t)v0 =
∞∑

n=−∞
eiωnt〈v0, φn〉φn , v0 ∈W .

The reference signal is given by

r(t) = FrTS(t)v0 =
∞∑

n=−∞
eiωnt〈v0, φn〉Frφn ,

for some operator Fr ∈ L(W ,Y ).
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The exosystem

The behaviour of the sequence (〈v0, φn〉Frφn)n∈Z determines
the class of allowable reference signals.
Hence the choice of v0 and Fr can be used to control the
smoothness of r .
Similar considerations hold for the disturbance signals.
Results can be extended for exosystems with Jordan block
structure (Paunonen, Pohjolainen (2010))

.
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Solvability of the Sylvester Equation : Convergence
condition

Lemma

Suppose that iωn ∈ ρ(Ae) for n ∈ Z. There exists a unique
Hss ∈ L(W ,Xe) satisfying HssD(S) ⊂ D(Ae) and the Sylvester
equation HssS −AeHss = Be iff

sup
‖xe‖≤1

∞∑
n=−∞

|〈R(iωn ; Ae)Beφn , xe〉|2 <∞. (4)
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IMS and G-conditions

Definition
The controller (G1,G2,K ) satisfies G-conditions if
(1) N (G2) = {0}.
(2) R(G2) ∩R(G1 − iωnI ) = {0} ∀n ∈ Z.

Theorem (Paunonen)
A controller (G1,G2,K ) satisfies the G-conditions if and only if it
has IMS.

ΓS = G1Γ + G2∆ on D(S) =⇒ ∆ = 0.
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G-conditions and p-copy internal model

Theorem (Paunonen)
Let dim(Y ) = p and σ(S) ∩ σ(Ae) = ∅ . The controller
(G1,G2,K ) satisfies the G-conditions iff

(1) iωk ∈ σp(G1)
(2) The geometric multiplicity of iωk as an eigenvalue of G1 is at

least p.
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IMS and G-conditions

Lemma
The controller satisfies the G-conditions on Z = Z1 × Z2 if G1 and
G2 are of the form

G1 =
[
R1 R2
0 G1

]
, G2 =

[
R3
G2

]
,

where G1 and G2 satisfy the G-conditions
(1) N (G2) = {0}.
(2) R(G2) ∩R(G1 − iωnI ) = {0} ∀n ∈ Z.
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Choosing G1 and G2

The following choice of G1 and G2 gives a controller with IMS:
Z2 = `2(Y ), G1 (yn)n∈Z = (iωnyn)n∈Z with domain

D(G1) =
{

(yn)n∈Z ∈ `
2(Y )

∣∣∣ ∞∑
n=−∞

ω2
n‖yn‖2 <∞

}
and G2 ∈ L(Y , `2(Y )), G2y = (G2ny)n∈Z where G2n ∈ L(Y ) are
bijections that satisfy

∞∑
n=−∞

ω2
n‖G2n‖2 <∞.
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G1 has a p-copy of S

S and G1 can be viewed as infinite diagonal matrices

S =


. . . 0

iωn

0 . . .

 , G1 =


. . . 0

iωnI

0 . . .


If dim Y = p <∞, then each iωn occurs p times in G1, i.e., G1
contains a p-copy of S . If dim Y =∞, G1 has an ∞-copy of S .
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A Stabilizing Controller

Let Z = Z1 × Z2 = X × `2(Y ), K = [K1 K2], G1 and G2 as
before and

G1 =
[
A + BK1 + L(C + DK1) (B + LD)K2

0 G1

]
,

G2 =
[
−L
G2

]
, L ∈ L(Y ,X).
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Choice of K and L

Choose L so that A + LC is exponentially stable.
Let K1 = K11 + K12 and choose K11 so that A + BK11 is
exponentially stable.
Choose K12 = K2H where H is the solution of the Sylvester
equation

G1H −H (A + BK11) = G2(C + DK11).

Finally choose K2 = −B∗1 where

B1 = HB + G2D.
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A Stabilization Theorem

Theorem

The above controller weakly stabilizes the closed-loop operator Ae
and satisfies the G-conditions. If Y is finite-dimensional, then Ae
is strongly stable. (Hämäläinen, Pohjolainen (2010), Benchimol
(1978))
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Conditions on E and F

With the above choice of controller parameters the condition

sup
‖xe‖≤1

∞∑
n=−∞

|〈R(iωn ; Ae)Beφn , xe〉|2 <∞ holds if

∞∑
n=−∞

‖R(iωn ; Ae)‖2 <∞.

Asymptotically

‖R(iωn ; Ae)‖2 ≈ ‖P(iωn)−1‖2‖(PK (iωn)∗G∗2n)−1‖2{‖Eφn‖2, ‖Fφn‖2}
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Conditions on E and F

Since the reference and disturbance signals are of the form
∞∑

n=−∞
eiωnt〈v0, φn〉Eφn

these conditions put constraints on the sequences (Eφn)n∈Z and
(Fφn)n∈Z and on the behavior of the system’s transfer functions
at the infinity (Laakkonen (2011)).
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Conclusions

A review of robust controllers for infinite dimensional systems
with infinite-dimensional input and output spaces and
infinite-dimensional exosystems was given .
Easily checkable conditions for the robustness of the
regulation constraint are given
Necessary and sufficient conditions for the boundedness of the
dynamic steady state operator are given. These are related to
the behaviour of the transfer function of the plant on the
spectrum of the exosystem and the smoothness of the
reference and disturbance signals.
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Conclusions

An observer based controller incorporating an infinite
dimensional internal model that strongly/weakly stabilizes the
closed loop system was constructed.
If the input and output spaces are p-dimensional, then the
controller contains a p-copy of the infinite-dimensional
exosystem. For infinite-dimensional input and output spaces
this generalizes the concept of p-copy to ∞-copy.
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Further work

Robustness of strong/weak stability.
Robustness of the solution of Sylvester equation
Robustness of the condition iωn ∈ ρ(Ae) and the convergence
condition

sup
‖xe‖≤1

∞∑
n=−∞

|〈R(iωn ; Ae)Beφn , xe〉|2 <∞.

More general plant, e.g., unbounded B and C .


