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Context

Infinite dimensional port Hamiltonian systems :

@ Material and energy balance equations — physically
consistent model.

@ Definition of the geometric structure (Dirac structure) and of
the boundary port variables — derivation of boundary
control systems.

@ The core of the approach is the energy of the system and its
links with the dynamics and the environment.
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Context

Infinite dimensional port Hamiltonian systems :

@ Material and energy balance equations — physically
consistent model.

@ Definition of the geometric structure (Dirac structure) and of
the boundary port variables — derivation of boundary
control systems.

@ The core of the approach is the energy of the system and its
links with the dynamics and the environment.

New issue for system control theory

Modelling step is important — the physical properties can be
advantageously used for analysis, simulation and control purposes
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Context

In this talk :

@ Boundary control of infinite dimensional system using the
energy shaping approach and the immersion/reduction
method.

o Controller under port Hamiltonian format.

o Power preserving interconnection.

o Use of Casimir invariant (to link controller states to system
states).

@ Casimir functions :

o In the power preserving case : dynamical and structural
invariants obtained from Poisson Bracket.

o In the case of system with dissipation : structural invariants
obtained from Leibnitz Bracket. Not necessarily dynamical
invariants

@ Chosen illustrative example :
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In this talk :

@ Boundary control of infinite dimensional system using the
energy shaping approach and the immersion/reduction
method.

o Controller under port Hamiltonian format.

o Power preserving interconnection.

o Use of Casimir invariant (to link controller states to system
states).

@ Casimir functions :

o In the power preserving case : dynamical and structural
invariants obtained from Poisson Bracket.

o In the case of system with dissipation : structural invariants
obtained from Leibnitz Bracket. Not necessarily dynamical
invariants

@ Chosen illustrative example :

Control of microsystems : Nanotweezers for DNA manipulation |
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Considered system

Compensation

Comb drive
actuator

@ Objective : nano manipulation and DNA characterization
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Considered system

C,  Capacitive sensor
C.

AC
Tweezers arms 1

Actuation voltage

Compensation 4
spring Comb drive

actuator

@ Actuator : electrostatic comb drive — force proportional to
the square of the applied voltage F. = f(V?)
@ Sensor : electrostatic comb drive+capacitor — velocity
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Model

DNA bundle

Velocity

@ Mass spring damper + Timoshenko beam + mass spring
damper
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Model

DNA bundle

Velocity

Port
Hamiltonian
Controller

@ Mass spring damper + Timoshenko beam + mass spring
damper

@ Port Hamiltonian controller
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Port Hamiltonian modeling

@ Beam model :
o State (energy) variables (w(z, t) is the transverse displacement

and ¢(z, t) the rotation angle) :

?T';” —¢ — shear displacement
. pa%—vtv — transverse momentum distribution,
8—¢ — angular displacement,
/p% — angular momentum distribution.

o Effort variables and energy :

F — longitudinal force,
=| 7 7 velocity M= [ (e + 2 v Ed+ )
=T — torque, P =S 1Ty 2T,
w — angular velocity.
e DNA

o Combdrive+suspension system
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Port Hamiltonian modeling

@ Beam model :
o From balance equations :

o 2 0 -1 F

% o % _fbm 0 0 v

ot | 0 0o 0o £ T

f 1 o Z o0 w
N——

Tbm—TRbm e

That can be written :

ot 0z
e DNA

o Combdrive+suspension system

Ox _ <P18+P0+G0>£x with Py = P|, Py = —P{, Go = G,
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Port Hamiltonian modeling

@ Beam model :
o From balance equations :

Jé)

o £ 0 -1 F
% o % _fbm 0 0 v
ot | 0 0o 0o £ T
F 1 o Z o0 w
N——
Tbm—TRbm e

Considering fp,, = 0 one can choose as boundary port

variables as :
fa o P1 —P1 EX(b) . T o
{ea]_u[l | }{Ex(a)]wthZU—Z
o DNA

e Combdrive+suspension system
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Port Hamiltonian modeling

@ Beam model :
o From balance equations :

o 2 o0 -1 F
x | Z —fm 0 0 v
\‘TL_ 0 0 0 & T
; 1 o Z o0 w
——
Tbm—Rbm e
A possible choice is :
[ v(b)
w(b)
—v(a) v(b) F(b)
fy —w(a) w(b) T(b)
{ e ] =1 oFp) MY @) [V T F)
T(b) —w(a) T(a)
F(a)
L T(a) |

o DNA
@ Combdrive+suspension system
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Port Hamiltonian modeling

@ Beam model :
o DNA
From balance equations (g, = { Zb } gen. coord.,
b

M dwb
Pp = [ Jd¢b } gen. moment.,

H(qbapb) (pbl + pr + kbqbl)) :

slel =15 o] [aem ]« 7] %]
Jb—Ryp
o] o= ey (G

@ Combdrive+suspension system
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Port Hamiltonian modeling

@ Beam model :
o DNA
e Combdrive+suspension system

From balance equations (g, = { 2/3 } gen. coord.,

a

dw,
_ a dt
= en. moment.,
Pa [ Jddqza }g

2 2
H(aspa) = 3 (5 + % + ko))

oian
| IS

[0 1] |0

&5
—_
I



Modelling
[ 1]

Port Hamiltonian modeling

@ Beam model :

e DNA

e Combdrive+suspension system —+controller
Controller :

Va
dye = (Je—Re) OXCH(XC)—&—GC[M ]

a

{FC} — 6T H(x)
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Port Hamiltonian modeling

@ Beam model :
o DNA

e Combdrive+suspension system —+controller
From balance equations :

9a 0 / 0 3an(qa,Pa,Xc) 0 E
% Pa = -1 -D, _GT apaH(qavpaa c) + / |: Ta
Xc 0 Gc J - R axcH(qavpav C) 0 :
y 0q,H(da, Pa; Xc)
[ w" } = [0 1 0] 0p, H(Ga, Pas Xc)
? axcH(qavpaaXc)



Port Hamiltonian modeling

Power preserving interconnexion :

Modelling

oe

Ubeam = |: Upeam,a :| _ |: fa,a :| _ |:
Ubeam, b fo.b
(2T
Up €9,b

—Ya :|
—Yb

The closed loop operator f = (J; — R¢) e is equal to :

" Jom—Rem| 0 0 0 0
0 0/ 0
Je = Re = (c;) o _c[fa e E;TR i
i C(;)b 0 —O/ _lDb
Gope | Yob O 0 0T DR = {ec Hle,, = —Gase)




Casimir functional
Conservative case

@ In the conservative case f = Je :
o Space of admissible efforts :

Eadm = {e € £|3f € F such that (f, e) € D}

o Skew symmetric bilinear form on £ 4,

[e1, &2] ;=< ei|h > L, f, € F such that (f, &) €D

o Set of admissible functions

K

2dm = {k:F —R|Vae FIec€ &,y such that Véa € F,

Vn € R, k(a+nda) = k(a) +n < elda > +o(n)}

e is the derivative of k at a, is denoted by dk(a)



Casimir functional
Conservative case

@ In the conservative case f = Je : on Kad we define

{ki, ka}(a) := [0ki(a),0k2(a)], ki, ko € Kadm

{, } defines a pseudo-Poisson bracket.

o By skew-symmetry of [, ] it immediately follows that also {, }
is skew-symmetric
o Satisfies the Jacobi identity (in the linear

case){x,{y,z}} +{z, {x,y}} +{y. {z.x}} =0
Hamiltonian system are defined by : X = {x, H(x)}

The Casimir functions are the functions C € K,g, such that :
{k,C} =[0k,6C] =0, Yk € Kagm

In this case :

9C T ox - -
g = 9€ 1 9x — [5C,6H] = {C,H} = — {H,C} =0



Casimir functional
Conservative case

@ In the dissipative case f = (J — R) e : we consider fp = Je
o Space of admissible efforts :

Exdm = {e € £|3fy € F such that (fo,e) € Dy}
o Bilinear form on gadm
[e1, &] := (e1|fo)—(e1|Rex) € L, fy € F such that (fy,e1) € Dy

on Kadm we define

{kl, kg}(a) = [(5k1(3),(5k2(3)], kl, ko € Kadm

{,} defines a Leibnitz bracket.Dissipative port Hamiltonian
system are defined by : x = {x, H(x)}

The right Casimir functions are the functions C € K,4m, such
that :
{k,C} = [6k,6C] =0, Vk € Kagm
. 95¢ T ox
In this case : 9¢ = 9" 9% — {C H} +£ —{H,C} » € =0

Ox ot



Control design
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Immersion approach

From the closed loop system dynamics :

d| x| __ dxHer(x, xc)

shape the closed loop energy function :
Hei(x,xc) = H(x) + He(xc)

by restricting the controller dynamics using Casimir invariants of
the form :

C =xc+ F(x)

Then
Hcl(XaXc) = H(X) + HC(C - F(X))

It remains to choose H. such that : dHy(x*) = O+stability




Control design
®00

Example

Back to the example : the right Casimir invariants are defined such
that :

{k7 C} = [5k76C] =0 Vk7 Ce Kadm
ie. for 0,C € D(J: — R¢)

( (jbm - Rbm) 6XC =0
5p,C =0
Ga0xC — 64,C — Da0p,C — GT6,,C =0
Gedp,C + (Je — Re) 6x.C
5p,C =0
Gb0xC — 64,C — Dpdp,C =0

Choosing J. =R =0, Gc =1 and :

CI'(Xv qa, Pa, 9b, Pb, XC) = Xci + Fi(Xa Pa; db, Pb)
one can find :

L L
C1 = Xc1*q1,a+2€h,b*2LQ2,b*2/ (x1 +23)dz, Co= Xc2+qz,a+2q2,b+2/ x3dz
0 0
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Example

One can express the controller state from the system state by :

L L
Xcl = ql,a—ZLQ2,b+2/ (x1 + 2x3) dz—2q1 b+ C1, X2 = q2,a_2q2,b_2/ x3dz+C
0 0

It remains to choose the controller Hamiltonian function in order
to shape the closed loop energy function. The desired equilibrium
is given by :

F(L) = —kpx™, T*(L) = 0,v*(L) =w*(L) =0,v(0) =w* (L) =0,90" =0
That leads to :

o v

. mg .3 (mgl® mg\ = |
W—2EI(Z L) <2E/+K>(Z L) — kpx

—x * ok Uk ok ok ok k k%
= = (X17X27X37X47qa7pa7xc7qb7pb)
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Example

He

N[

f (KXl —l— + EIX3 ) dz

+
z\w

(@

Search of admissible Lyapunov function through H,

He(Xc1, Xc2) = He(qa, X1, X3, qb)
such that H, has a minimum in =*
@ O=Hy(=*)=0
@ there exist v,I1,> > 0 such that
F|0=] < Ha(Z* +62) — Ha(Z") < T2l|6=]”

Ex: H, (Xc17Xc2) =
—K1(xe1 — x31)? = Ka(xe2 — x%)? + Mi(xe1 — x21) + Ma(xc2 — x25)



Conclusion

What has been done :

@ Definition of the right Casimir invariant derived from Leibnitz
bracket.

@ Use of the right Casimir invariant derived from Leibnitz
bracket for control purpose.

@ A first application to nanotweezers.

Ongoing researches :

@ Proof of stability for a class of controllers using results
obtained for PHS.

@ Application to dissipative differential operators.

@ Other controller parametrizations.
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