Bao-Zhu Guo and Dong-Hui Yang

School of Computational and Applied Mathematics
The University of Witwatersrand, South Africa

July 18, 2011 DPSC



Shape optimization:

Many shape optimization problems can be seen in the larger
framework of optimal control problems:

D. Bucur, G. Buttazzo,
Variational Methods in Shape Optimization Problems,
Birkhauser, 2005

The first and certainly most classical example of a shape
optimization problem is the isoperimetric problem:

Find, among all admissible domains with a given perirmmeter, the
one whose Lebesgue measure is as large as possible.

4
d curve
Max |€2
— | |~

Perimeter is fixed Hurwitz,1902

Q is the circle
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Shape optimization:

The Newton problem of minimal aerodynamical resistance: The
problem of finding the shape of a body which moves in a fluid
with minimal resistance to motion

One of the first problems in the calculus of variations

Newton (1685, Principia Mathematica):
[an inviscid and incompressible medium]

=

Resistance of
globe is half
of cylinder!
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Shape optimization:

\/

** The most famous shape optimization problem is on
the first eigenvalue of Laplacian:

Fixed constant
—Auz) = Mu(z),z € Q C R2,|Q| =/,
{ ulge = O. D/

AL <A< < Ap < - e

AL(Q29) = min A1(Q) = min min / Vu|2da.
©2|=c [QA=cueHE(Q),|lull 2(q)=1 /9
1 |

Area c

QF =
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Shape optimization:

Solution does not always exist!
min {/D lug —c?de, —Aug=1in Auy € H(%(A)}

where D is an open bounded set, A C D € R? is open set, u4

is defined on D with zero extension.

Conclusion:
/ Too small!

If c is small enough,\No smooth A )solves above problem!
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Shape optimization

\/

** For shape optimization: The control variable is domain!

!

Minimizing sequence: {Q,}_, has convergent subsequence {Qm,}

A topology|for admissible sets to have@esj (weak enough)
_|_

A topology should be to geticontinuity>(strong enough)

Involves: PDE +Geometry Uy, 7 UQ
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Our problem

Consider an elliptic problem:

—Aug = f e HY(B"), ug € H&(Q),
A = div(AV),alé]? < (Ag,6),V € e RY.

B* c RN bounded domain B* c RY

B* 5 U(0, 2R0) pil>
4
4

U(xz,r) the open ball, and B(x,r) the closed

ball of RN, both centered at x with radius r.
1
J(Q) = E/B* lug—g|dz, J(Q*) = inf{J(Q); 2 € C C U(0,2Ro)}, g € L2(B*)

What class ¢ of open sets @ can be found so that there exists
at least one solution for above shape optimization?
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Hausdorff distance

Open sets class ¢ becomes a metric space under Hausdorff distance:

0(21,925) = max{ sup dist(m,ﬁ\szz), sup dist(F\Ql,y)
xG?\Ql yG?\QQ

QB Q, if p(Q2m, Q) — 0 as n — oo.

(K1, Kp) = max{ sup dist(x, K5), sup dist(y,Kl)} , K1, K> are compact
reK1 yekKs

Qp L Q= B\ 0 2 BF\ Q.

4

Principle 1 [Compactness]{Qm}X_1 CC = Qn, 5 Q €C;

— | Existence
Principle 2 [Continuity]: @, % Q= uq, — ug!

Convex open set class (cannot be too small) meets the principles!

July 18, 2011 DPSC




Hausdorff distance: known facts

Lemma 1: [r --property for open sets]

Qn 5 Q =V open subset A,A C 2, A C 2, sufficiently large n.

Lemma 2:

(0,48) is a compact metric space,O = {K C B*| K is compact} :
Qn C B*,3Q,, % Q e B,

The class of all open sets of B* is compact under
Hausdorff distance!

But it is too large to have continuity!
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Open set: interior ball condition

Definition 1: [interior ball condition]

xo € 0F2. 2 is said to satisfy the (interior bal/) 44

condition at xq, if 3 U(y(xg),r(zp)) C 2 with 50

zo € U (y(zo),m(x0)).

Q2 is said to satisfy the uniformly interior ball
Y Y Q2 cannot be too

condition , if r(zg) > ro > QM small!

Remark: This is first introduced by us, independent of convex!

Motivation: Smooth surface has interior ball property, like

circle of curvature!
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Open set: exterior ball condition

Definition 2: [exterior ball condition]

xo € 022. 2 is said to satisfy the exterior ball
condition at xzq, if 3 B(y(xg),r(xg)) C B*\ R

o
with zg € 0B(y(xg),r(xg))

Q2 is said to satisfy the uniformly exterior ba/l‘

condition , if r(xg) > ro > 0,V zg € 90S2.

\_//_J/’

Remark: This is completely motivated from interior ball condition!
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Open set: Property

Definition 3: [Property (Cy,) ]

Q c RY is said to have property (Cj), if for
any x,y € 2, 4 compact set K with z,y € K,
such that K € © and U,cxU(z, L) € Q, d* =

min{dist(xz,02), dist(y,02)}, and M > 1 is a

given constant.

Connected compact

Motivation: connected domains converge to connected doamin!

Q, o .
M . . disconnected!
o=—0 O, O
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Three open sets class:

(C1 = {Q C B(0,Rg) C B*|
Q2 satisfies thewniformly interior ball conditﬁ and rq > ro}t.
Co= {Q2C B(0O,Rpy) C B*|U(xq, R) C Q,

. 2 satisfies the and rq > ro}.
Cz3= {Q2C B(0O,Rg) C B*|U(xq, R) C ,
Q2 is a open set, and has the property (Cu)},

where R > 0 is a given constant.

Remark:

C1:rq>rg>0; Q caTinS)t be too smalll

Co:lU(xq,R) C Q2ro >rg>0;

C3:U(zo,R) C Q.

Advantage of C3 : Any open set in C3 is connected!
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First main result: compactness

Theorem 1 [compactness of open set class]:

For every given i € {1,2,3}, if {Q2n}>°_1 CC;, then there
exist a subsequence {2m,; }72 ¢ of {Q2m}, " and Q2 € C;

m=1"

such that
Qmy, L Qas k— oo

In other words, each (C;,p) is a compact metric space.
Moreover, for any i,57 = 1,2, 3, (Ci ﬂCj,p) is also a com-

pact metric space.

The proof is quite elementary!
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Special attention for

Let ¢=C1nCo. ¢ has both uniformly interior and exterior ball property

Expect: ¢ is more smooth:

Remind: any smooth surface has interior property!
The smoothness of ¢ is the inverse of above property!

Lemma 3: Let 2 € C;NnCy. Then for every xg € 052, there exists
a straight line L(xg) passing through the point zg, such
that all centers of the exterior and interior balls at zg

lying in this line. Moreover, L(xzg) is unique.

L(xq)
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Special attention for

B((07 '7’0), ’rO)

el
»

By rotation and translation, we may suppose that zo = {0} € 6%2.
Lemma 4: For any 2/ € U(O,{—%) c RN~ the line Ly = {(a/,5);s €
R} intersects with the set [U(0, 12) x (=2, 2)]N o2 only

one point.

@ we see that there exists a function f: U(0,12)(Cc RVN"1) - R, 2/ —

f(a) such that f(0) = 0 and {(«/, f(z/))| ' € U(0,72)} = [U(0,12) x (—10,70)] N o2
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Second main result:

B((07 '7’0), ’rO)

el
»

xg = {0} € 922.

@Ve see that there exists a function f: U(0,{2)(C RN71) - R, 2/ —

f(a') such that £(0) =0 and {(«/, f("))] a’ € U(0, )} = [U(0, 3) x (~1,’p)] n o2

The property of f:
a). g—i(O) = 0 for every i € {1’ oo N — 1}_ No more!

b). g—gj 1 U(0, g2%)(C RV=1) — R is Lipschitz continuous for

every']e{l’...,N_l}
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Second main result:

Let 2 € R? be the interior domain surrounded by the following four curves I;,: =

1,2,3,4.

-
=

 {(z,y) €R2|z € [-1,1],y = 1}

A

ST I
el o

I_Q: {(CU,'y) € R2|33 € [_17 1]7y — _1};

M3 {(z,y) €R?jz =1+ /1 —-y?,yc[-1,1]};

(1 x € (0,1];
My {(z,y) €ER?|lz = -1 —/1 -y ye[-1,1]}. f(x)_{ J1—(z-1)2, zel1,2).

Then Q € CL1 butlQ ¢ 2. (1) =o, fﬁ’r(l)ﬁ

July 18, 2011 DPSC




Exterior = Property of

Theorem 2: c e ct:1.

Theorem 3: [Exterior r— property of ¢ € c11]
If {2,}22.; C C1NCs and Q, % Q. Then for each open
subset A satisfying A C B* \5, there exists a positive
integer np depending on A such that A C B*\ €, for all

n > n.
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Exterior = Property of

However, the exterior I - property can not be deduced from €, % Q

A

Js Q, = {(0,1) x (=1,0)}U{(0,1 — 1) x [0,1)}

Example: & ‘ l

Q=(0,1) x (—1,0)

D Sk

—1
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Continuity conditions

{Qn}02 C B, let up be the solution of Equation:

—Aup = fin Qn, up € H3 ().

Assume that
Needs special

. Wb ae, BF\Q, > B\ Q. property of class
@ XBA\Qy — [ in L°° weak star topology, I > 0 a.e. in ﬁ@
i

—
Q.Ifw € Hl(B*),'wxﬁ\Q = 0, then w|q € HE(S2), WhereW

the characteristic function of €2.
— ——, Smoothness of 6

Then up — uw in H1(Q), where u is the solution of Equation below

—Au=finQ, wueHQ).
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Existence for class

Lemma 5: If 2, € C = C1 NCy, 2 is a nonempty open set, and

Q5 Q, then It needs exteriorr—property

So condition (ii) is satisfied!

Condition (iii) is the direct consequence of fact ¢ € c1.1.

Theorem 4: [existence of optimal shape in the class ¢ =¢C1nCs ]

The shape optimization problem

1
J(Q*) = inf J(Q) = inf =
() = jnf J() = |

2
o2 [ Iue ol

admits at least one solution €2 for the open sets class C = C1 NCy. In particular, if

f € L>®(B*), then ug € CL1(Q).

July 18, 2011 DPSC



Boundary optimization problem in

\/

** Consider boundary shape optimization problem:

J(2) = min J(2) = min /aQ £, v(x))dHN 1

where
C=C1NCo
~N-1 is the N-1-dimensional Hausdorff measure on o<.

v

f is a nonnegative function

v is the normal unit vector exterior to 2

Newtonian resistance in N-dimensional body :
f@v) = (@ -t

a — direction of the motion
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erte A RN as r = ($1, Tt 7xN_17xN) — (mlva)'

In the proof of Theorem 2: ¢ e c1:1:

0f2
QeC,zed, 3act! function fz: @r
0

1 0 x

fe 1 U'(0,3a0) — R with f(0) =0, ag = % - 522+

After rotation and translation: we have a ¢1! map:
W, (€,6N) € U(a,3a0) — (¢, ¢ — £2(¢))
(i). Wz (U (2,3a0) N2) CRY;  (ii). Wa (U (2,3a0) N9Q) C RY;

(i),  w,ecHY (U (z, 3a0)), Wyl echl(D), D=w,(U(z, 3ap))

{Wz} — coordinate charts of aQ
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Computation of Hausdorff measure

In order to show the existence of boundary shape optimization
we need

QL Q = HN-1(8,,) — HN-1(8%2).
To do so, we have to find how to compute measure?

U

Find coordinate charts of o2
U

Find coordinate representation

1
Riemannian manifold
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Find coordinate charts of =«

erte T € RN as xr = (wla e awN_laxN) — (mlva)'
QeC,zed2, 3achl function fu:

fz 1 U'(0,3a0) — R with fz(0) =0, ag = % - 5285

256N
ol oN ;) N / %2
Ve = Qn U(wa 300); WQ = {(Vwa ww)}xeaQ U {(Qa Z'dQ)} < U(x, 3a0)
where idg is the identity map of 2.
2% — Coordinate charts of Q I{ RN
ORY +

v

Lemma 6: € is Riemannian manifold: |

Q is an oriented C1 Riemannian manifold determined by

<75 with boundary 8, with Euclidean metric.
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Find coordinate charts of &«

Lemma 7: 8% is Riemannian manifold:

Let (€2, o7%%) be the Riemannian manifold with the Eu-

—

over,@s also an oriented ¢! Riemannian m;aifold )

determined by

N
clidean metric g = (-,-) confirmed by Lemma 4. Then Ry
. . ; = . ORLY
the including maw 2 is an embedding] More- + R
| >

T ={(Ve, Up); (Vi, W) € 72, and Uy = Vi 109, Uy = oy, |

with induced metric @
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Representation of coordinate of %«

Lemma 8: Coordinate representation:

N .
g= Y (d¢/)? coordinate of RY

j=1
the immersion ¢ has the following representation on the RN
_|_
local chart (Vz, W) of 02 ]GRQ\I
. N-1 l , . | >
=1

N-1 820 o
gly, = (6 + —i—.> d¢rdg?,
Va ”zzjl T 9¢t a¢I

AVylg. = /1 + |Dfal?dCtA- - AN 1, Dfyp = (af“” Ofs ) .

ot e
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Coordinate charts of

Lemma 9:

Local coordinate chart of 02y, is (VXi,na\Tin,n)- ol =
{(VXi,n, Wy n) i=1,-- ,M}. (0, o7y) is an oriented
C! Riemannian manifold with Riemannian metric g, =

ir og, and

Wanlpy. = V1 +IDfxgul2dCt A A dgV L

Moreover, «75%» and 7, are Cl-compatible and coherently

oriented.
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Boundary convergence

Lemma 10:
For every ¢ € U'(0,2ag), one has

Dfx,n(€) — Df(E).

V14 Dfx,n(€)2de — V14 D fx,(€)Pde’

/U’(O,an) U’(0,2a0)

Lemma 11:

Qn L Q = VoI(82n,) — VoI(8R2), Vol(852,) = /aQ dvy,.

Lemma 12: Vol(8Q) = HV-1(89) for any Q € C.

Theorem 5: C=C1NCo. 2 Q = HVN-1(6Q,) — HN-1(0Q).
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Existence of boundary shape optimization

Theorem 6: ¢ =cinCo.

Let f : RY x SV-1 — RT be a lower semicontinuous
function, where S¥—1 denotes the (N — 1)-dimensional

unit sphere of RN . Then the minimum problem:

J(QF) = geug J() = g\€|2 /8{2 fz,v(z))dHN 1

admits at least one solution.

Proof: Measure theory + Qe ct:l.

---The end---
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