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Q C R" bounded the wave equation

Pv—Av=0 in QxR,
v=0 on 02 xR,

describes a conservative system
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Lindirecl stabilization

a conservative system

Q C R" bounded the wave equation

Pv—Av=0 in QxR,
v=0 on 02 xR,

describes a conservative system: the energy of a solution

E(u(t) = ;/Q (1Du(t. X)P + loru(t, x)P?) ox

is constant in ¢t
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a dissipative system

the damped wave equation

O2u—Au+ 0w =0 in
u=20 on

is exponentially stable as t — oo

QxR,
0 xR,
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Lindirect stabilization

a dissipative system

the damped wave equation

O2u—Au+ 0w =0 in QxR,
u=20 on 02 xR,

is exponentially stable as t — oo

E(u(t)) < E(u(0)e®"™" (¢ >0)
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I—indirect stabilization

a weakly coupled system

consider the coupling through zero order terms

2 — =
{8tu Autdu+av=0 . o o

92V —Av+au=0

u=0=v on 00 xR
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Lindirect stabilization

a weakly coupled system

consider the coupling through zero order terms

in QxR

QPu— Au+0w+av=0
92V —Av+au=0

u=0=v on 00 xR

any kind of stability for o # 0?|

MIE



Indirect damping for led

P

I—indirect stabilization

lack of exponential stability

I

)
0
0)



Indirect damping for coupled systems

I—indirect stabilization

lack of exponential stability

recast

2 _
{8tu Au+0iu+av=0 B

OV —Av+au=0

as an evolution equation in H = [H}(Q) x L3(Q)]?
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Lindirecl stabilization

lack of exponential stability

recast

2 _
{8tu Au+0oiu+av=0 B

OV —Av+au=0

as an evolution equation in H = [H}(Q) x L3(Q)]?

!/

u u u
u’ (L K u’ _.r u’
v T\ K L v o v
4 v/ 4

» Ly, Lo generators of Co-semigroups on HJ () x L3(Q)
» K compact operator in H}(Q) x L3(Q)
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lack of exponential stability (ctnd)

u u u
u' (L K u' . u’
v T\ K L v - v ’
74 74 v/
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Lindirect stabilization

lack of exponential stability (ctnd)

/

u u u
u' (L K u' . u
v T\ K L v o v ’
74 74 v/

> wo(L) = type of the semigroup generated by £
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Lindirecl stabilization

lack of exponential stability (ctnd)

/

u u

u . L1 K u .
v o ( K L ) v =4
v/ 4

> wo(L) = type of the semigroup generated by £

> wess(L) = essential growth bound
(blind to compact perturbations)
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Lindirecl stabilization

lack of exponential stability (ctnd)

/

u u u
u’ (L K u’ _.r u’
v K b v o v
v/ 4 v/

> wo(L) = type of the semigroup generated by £

> wess(L) = essential growth bound
(blind to compact perturbations)

L K

wO(ﬁ) > wess(ﬁ) = Wess > wess(LZ) =0.
0 L

= system cannot be exponentially stable
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Lindirecl stabilization

lack of exponential stability (ctnd)

/

u u u
u’ (L K u’ _.r u’
v K b v o v
v/ 4 v/

> wo(L) = type of the semigroup generated by £

> wess(L) = essential growth bound
(blind to compact perturbations)

L K

wO(ﬁ) > wess(ﬁ) = Wess > wess(LZ) =0.
0 L

= system cannot be exponentially stable
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a system of second order evolutions equations

in a separable Hilbert space H

uv'+Aiu+Bu +av=0
V' +Av+au=0
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Labstract set-up

a system of second order evolutions equations
in a separable Hilbert space H

uv'+Aiu+Bu +av=0
V' +Av+au=0
(H1) A;: D(A)) c H— H (i =1,2) are densely defined closed
linear operators such that

A=A, (Aju,u) > (,<),'|U|2 (w1, wg > 0)
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Labstract set-up

a system of second order evolutions equations

in a separable Hilbert space H

uv'+Aiu+Bu +av=0
V' 4+ Av+au=0

(H1) A;: D(A)) € H— H (i =1,2) are densely defined closed
linear operators such that

A =A7, (Aiu,u)y > wilul?  (wi,w2 > 0)

(H2) Bis a bounded linear operator on H such that

BZB*? <BU,U>Zﬂ|U’2 (/8>0)
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Labstract set-up

a system of second order evolutions equations

in a separable Hilbert space H

uv'+Aiu+Bu +av=0
V' 4+ Av+au=0

(H1) A;: D(A)) € H— H (i =1,2) are densely defined closed
linear operators such that

Ai=Aj, (Aju,u) > wilul®  (wy,wp > 0)
(H2) Bis a bounded linear operator on H such that
B=B*, (Bu,u)>pgu? (6>0)
(H3) 0 < |o] < y/@wz
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energies

energies associated to Aq, A>
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Ei(u,p) = 5 (1A]"*ul? +|p?)
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Labstract set-up

energies
energies associated to Aq, A>
: _ Y a2,2 o ip2
Ei(u,p) = 5 (1A]"*ul? +|p?)
total energy of the system U = (u,p, v, q)

E(U) = Eq(u,p) + Ex(v,q) + afu, V)
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L

abstract set-up

energies
energies associated to Aq, A>
, _ Y a2,2 o ip2
Ei(u,p) = 5 (IA2ul? + pl?)
total energy of the system U = (u, p, v, q)

E(U) == Eqi(u,p) + E2(v,q) + a(u, v)
assumptions yield

2
> |u? < o Ei(u,p)
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abstract set-up

energies
energies associated to Aq, A>
, _ Y a2,2 o ip2
Ei(u,p) = 5 (IA2ul? + pl?)
total energy of the system U = (u, p, v, q)

E(U) == Eqi(u,p) + E2(v,q) + a(u, v)
assumptions yield

2
> |u? < o Ei(u,p)

> £(U) 2 v()|Ex(u,p) + Ex(v. )
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I—abstract set-up

reduction to a first order system

H = D(A)?) x H x D(AY?) x
(Ul) = <A”2uA‘/2> +(p,P)

+(AYRv, AYPVY +(Q, Q) + a(u, V) + a(v, T)
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=
Jreey)
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Labstract set-up

reduction to a first order system
H o= D(A1/2) (A1/2)
U0y = (A%, A”2 o) + (p, )
HAYPv, AP0 +(q,3) + alu, V) + alv, T)
system takes the equivalent form
U'(t) = AU(t)
U(0) = Up := (u% u',vO,v1).

with A : D(A) C H — H defined by
D(A) = D(Ay) x D(A/?) x D(A) x D(AY?)
AU = (p, —Aju— Bp — av,q, —Axv — al)
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I—standard boundary conditions

a first stability result

Theorem (ACK 2002)
Assume, for some integerj > 2,

|Aru| < c|AfPul  Yue DAY (ACK)
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Lstandard boundary conditions

a first stability result

Theorem (ACK 2002)
Assume, for some integerj > 2,

|Aru| < c|AfPul  Yue DAY (ACK)

> Uy € D(A") (some n > 1) = £(U(t)) < —25 (U%)(0))
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Lstandard boundary conditions

a first stability result

Theorem (ACK 2002)
Assume, for some integerj > 2,

|Aru| < c|AfPul  Yue DAY (ACK)
> Uy € D(A") (some n > 1) = £(U(t)) < —25 (U%)(0))

» VUpeH, EU(H)—0 as t—
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Lstandard boundary conditions

a first stability result

Theorem (ACK 2002)
Assume, for some integer j > 2,

Al < clAPul  vue D(AS?) (ACK)
nj
» Uy € D(A") (somen>1) = E(U(1)) < % > e(uh(0))

k=0
» VU e H, E(U(t) -0 as t—

observe

(ACK) <= D(AY®) c D(A)) & |AA2ul < clul
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I—standard boundary conditions

main tools

proof uses
» energy dissipation

d /
Eu) =—[B2u (D)

(Uo € D(A))
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Lstandard boundary conditions

main tools

proof uses
» energy dissipation

%g(u(t)) = —|B'2U'(t)2  (Up € D(A))

» multipliers of the form Ag_jv and A;_jA1 u
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Lstandard boundary conditions

main tools

proof uses
» energy dissipation

%g(u(t)) = —|B'2U'(t)2  (Up € D(A))

» multipliers of the form Ag_jv and A;_jA1 u
» an abstract decay lemma
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Lstandard boundary conditions

abstract decay lemma

» A: D(A) C H— H generator of a Cyp-semigroup
» L: H — [0,+00) continuous function

T K
/ L(ex)at < ¢ 3 L(Ax)
0

k=0

MIE
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Lstandard boundary conditions

abstract decay lemma

» A: D(A) C H — H generator of a Co-semigroup
» L: H— [0,+00) continuous functlon

/ L(e dt<cZLA"

k=0
= Vn>1,Vxc D(A™),YV0<s<T

/L (=9 dt<c”(1+K”1ZL eSAARX)

) k=0
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Lstandard boundary conditions

abstract decay lemma

» A: D(A) C H — H generator of a Co-semigroup
» L: H— [0,+00) continuous functlon

/ L(e dt<cZLA"

k=0
= Vn>1,Vxc D(A™),YV0<s<T

/L (=9 dt<c”(1+K”1ZL eSAARX)

) k=0

> L(e®x) < L(e%x) = L(e"x) < ¢"(1 + K)"! m > L(Akx)
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Lstandard boundary conditions

example 1: Dirichlet boundary conditions

Q cR"” bounded F=0Q

02U — AU+ 0w +av=0
O2v—Av+au=0

with boundary conditions
u(-,t)=0=v(,1t) on I Vi>0
in this example Ay =A= A, with
D(A) = H*(Q) N H{(Q), Au=-Au

sothat (ACK) : |Aju| < c|AY%u| holds with j = 2

in Q x (0, +00)
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Lstandard boundary conditions

example 1: conclusion

2 — =
{8,u Au+dwu+av=0 N Qx(0,+00)

OPv—Av+au=0
u(-t)=0=v(1) on I Vi>0

{ u(x,0)=u(x), U(x,0)=u'(x)

v(x,0) =v9(x), V(x,0)=v'(x) Z&CRY

MIE
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Lstandard boundary conditions

example 1: conclusion

02U — AU+ 0 +av=0 .
{8t2v—Av+au:O in - 2x(0, +o0)
u(-,t)=0=v(-,1t) on I Vi>0

U(X7O) = UO(X)a U/(X, 0) —_— (X)
{ v(x,0) = vO(x), V/(x,0) = v!(x) xeQ

conclusion: for 0 < |a| < Cq

/ (|8tu\2 +|Vu® 4 |9¢v]? + |Vv]2) dx
Q

Cli,002 12 0
< Z(IPlB o+ U3 o + 11V

2 12
5t v H1,Q>
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Lstandard boundary conditions

example 2: hybrid boundary conditions

Let o € R and consider the problem

2 — =
{8,u Au+oiu+av=0 in Q x (0, -+0)

Pv—Av+au=0
with boundary conditions

ou
(%—FU)(',U =0onTl Vs 0
v(-,t) =0onT

MIE
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Lstandard boundary conditions

ACK does not apply

D(A1)= {UE H2(Q) : %Jru:Oon r} , Aju=—Au
D(Az) = H3(Q) N H(Q), Aov = —Av

Lemma (ACQG)
D(A’z‘/ 2) is not included in D(A1) for any k > 2

MIE
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Lstandard boundary conditions

ACK does not apply

D(A1) = {ue H?(Q) - %—FU:OOﬂ F} , Aju = —Au
D(Az) = H*(Q) N HY(Q), Asv = —Av

Lemma (ACQG)

D(A’z‘/ 2) is not included in D(A1) for any k > 2

Proof.

k=2) vy vy = —AVY
( ) v vw=0=Av, onT ! 0

MIE
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Lstandard boundary conditions

ACK does not apply

D(A) = {u e H3(Q) - g“
D(A2) = H*(Q) N H3(Q), A
Lemma (ACQG)

D(AX/?) is not included in D(A+) for any k > 2

Proof.
ARy —
(k=2) v - {( Ay =1
Vvw=0=Awy onl

D(Az) C D(A1) = 8V° =0 = /v1dx_

= —-Av

= /Vv1| dx:/(—Av1)v1dx:0but —Avy =1
Q Q

+u_Oonr} , Aju= —Au

vi = —Ay

I
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I—hybrid boundary conditions

second stability result

Theorem (ACG 2011)
Assume

D(Az) C D(A)®) & |Al%u| < c|Axu| Yu e D(Az) (ACG)
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Lhybrid boundary conditions

second stability result

Theorem (ACG 2011)
Assume

D(Az) C D(A)®) & |Al%u| < c|Axu| Yu e D(Az) (ACG)
Then

> Up € D(A*") (some n > 1) = £(U(t)) < % S E(UM(0))
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Lhybrid boundary conditions

second stability result

Theorem (ACG 2011)
Assume

D(Az) C D(A)®) & |Al%u| < c|Axu| Yu e D(Az) (ACG)

Then
4n
> Up € D(A*") (some n > 1) = £(U(t)) < % S E(UM(0))
k=0

» VUpeH, EU(H)—0 as t—
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Lhybrid boundary conditions

second stability result

Theorem (ACG 2011)
Assume

D(Az) C D(A)®) & |Al%u| < c|Axu| Yu e D(Az) (ACG)

Then
4n
> Up € D(A*) (some n > 1) = £(U(t)) < f” S (U (0))
k=0

>» VUpe H, E(U(t) -0 as t—

observe

(ACG) = |(Aju,Vv)| < c|Azv|(Aju,u)'/?
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I—hybrid boundary conditions

main tools

proof uses
» energy dissipation

d /
Eu) =—[B2u (D)

(Uo € D(A))
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I—hybrid boundary conditions

main tools

proof uses
» energy dissipation

d /
Eu) =—[B2u (D)

» multipliers of the form A;'v and A 'u

(Uo € D(A))
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Lhybrid boundary conditions

main tools

proof uses
» energy dissipation

d /
Eu) =—[B2u (D)

» multipliers of the form A;'v and A 'u
» abstract decay lemma

(Uo € D(A))

MIE
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I—hybrid boundary conditions

use interpolation

» polynomial decay estimates improved for

U € (H,D(A*"))go forsome n>1,0<6<1
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Lhybrid boundary conditions

use interpolation

» polynomial decay estimates improved for

U € (H,D(A*"))go forsome n>1,0<6<1

» since A generates a Cy-semigroup of contractions,
D(A™) = (H, D(A"))p2

if ok =mforsome0 <6 <1andk, meN
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I—hybrid boundary conditions

ACG with data in interpolation spaces

assume

D(Az) C D(A)?) & |Al2u| < clAqul

(ACG)
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I—hybrid boundary conditions

ACG with data in interpolation spaces

assume

D(Az) C D(A)?) & |Al2u| < clAqul (ACG)

let n>1, 0<6<1
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Lhybrid boundary conditions

ACG with data in interpolation spaces

assume
D(Az) C D(A)?) & |Al2u| < clAqul (ACG)
let n>1, 0<6<1 then

C
> Up € (1, D(A*)o2 = U3 < 257 | UollEre ppasnyy,.
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Lhybrid boundary conditions

ACG with data in interpolation spaces

assume
D(Az) C D(A)?) & |Al2u| < clAqul (ACG)
let n>1, 0<6<1 then

C
> Up € (1, D(A*)o2 = U3 < 257 | UollEre ppasnyy,.

» Up e D(A") = £(U(t)) < n/425 U (0))

MIE



Indirect damping for led

P

I—hybrid boundary conditions

example 2: ACG applies

I

)
0
0)



Indirect damping for coupled systems

Lhybrid boundary conditions

example 2: ACG applies

the energy of the solution to the boundary-value problem

2 — =
{@u Au+oiu+av=0 in Q x (0, -+0)

92v — Av+au=0

ou
(8”+u>(-,t) =0 onl Vi >0
v(-,t) =0 onTl

satisfies, for 0 < |a| < Cq,

Ex(u(), U'(1) + Eo(v(1), V(1))

c
< ci7a (AP + AP0 P 4 AV + |4y 2V ?)
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Indirect damping for coupled systems

I—hybrid boundary conditions

proof

» recall

D(A) = {ue H?(Q) : % u=0o0n F} , Aju= —Au
D(A2) = H*(Q) N H{(Q), Asv = —Av
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Indirect damping for coupled systems

L hybrid boundary conditions

proof
» recall

D(A) = {u e H3(Q)

+u=0o0n I’} , Aju=—Au
D(Az) = H?(Q) N Hy (€

87
), Apv = —Av
» to obtain, for all u € D(A+), v € D(Ap),

[(Aru, V)| = < c(Aru,u)"? |Asv|

/ VuVv dx
Q

since (Au,u) = [, |VulPdx+ [ |u?dS

I
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L hybrid boundary conditions

proof

» recall

D(A) = {ueHz(Q) ‘2“ u—OonI’},A1u:—Au
D(Az) = H*(Q) N H{(Q), Asv = —Av

» to obtain, for all u € D(A+), v € D(Ap),

[(Aru, v)| =

/ VuVv dx
Q

< c(Au,u)?|Asv|

since (Au,u) = [, |VulPdx+ [ |u?dS
> yields (ACG): D(A) C D(AI'?) & |Al2u| < clAsul
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I—concluding remarks

operators of higher order

define
D(A1) = {ue HYQ): Au=0= % on r} . Au=A%u
D(A2) = HYQ)NH{(Q), Awv=-Av
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Indirect damping for coupled systems

I—concluding remarks

operators of higher order

define

D(A;) = {u € HY(Q): Au=0
D(Az)

then
[(A1u,v)| =

/AuAvdx
Q

_ oau onl
- Ov

H2(Q) N HI(Q), Av=—Av

}, A1U:A2U

< c(Au,u)/?|Asv|
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Lconcluding remarks

operators of higher order

define
D(A)) = {ue HYQ): Au=0= % on r} . Aju= A%
D(A2) = HYQ)NH{(Q), Awv=-Av

then

[(Au, v)| = < c(Au,u)'? | AV

/AuAvdx
Q

deduce (ACG): D(Az) C D(A?) & |Al2u| < c|Aqul

MIE
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Lconcluding remarks

application

consider boundary-value problem

2 A2 —
8t2u+ u+ou+av=_0 in Q x (0, +00)
Ofv—Av+au=0
A
Au ) =0=22Y0 ) and v(.H)=0onT

ov

MIE
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L

concluding remarks

application

consider boundary-value problem

{6t2u+A2u+8tu+av =0

inQ x (0, +
v —Av+au=0 (0, o)
A
Au(-,t) =0 = a@yu(.’ £) and v(t)=0onT
then, for 0 < |af < / , energy decays at polynomial rate

E1(u(t), u'(1) + Eo(v(1), V’(f))

(o
< -7z (1413

12 02 12
o+ IVIBa + IV I2q)

I



Indirect damping for led

P

I—concluding remarks

different coupling parameters

I

)
0
0)



Indirect damping for coupled systems

I—concluding remarks

different coupling parameters
for general a1, ap € R consider

u'(t) + Aju(t) + BU'(t) + aqv(t) =
v'(t) + Axv(t) + apu(t) =0.
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Lconcluding remarks

different coupling parameters

for general a1, ap € R consider

u'(t) + Aju(t) + BU'(t) + aqv(t) =
v'(t) + Axv(t) + apu(t) =0.

» above results can be generalized replacing (H3) with
0 < ajan < wiws

MIE



Indirect damping for coupled systems

Lconcluding remarks

different coupling parameters
for general a1, ap € R consider

{u”(t) + Aju(t) + BU/(t) + arv(t) =0

V'(t) + Aov(t) + apu(t) = o

» above results can be generalized replacing (H3) with
0 < aqas < wiws

» E(U) := agEqi(u,p) + a1 Ex(v, Q) + ayaa{u, v)
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Lconcluding remarks

different coupling parameters
for general a1, ap € R consider

{u”(t) + Aju(t) + BU/(t) + arv(t) =0

V'(t) + Aov(t) + apu(t) = o

» above results can be generalized replacing (H3) with
0 < aqas < wiws
> E(U) := azE4(u, p) + a1 E2(v, q) + cva2(u, v)
> GE(U(D) = —az| B'2u/(1)2
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Indirect damping for coupled systems

Lconcluding remarks

different coupling parameters
for general a1, ap € R consider

{u”(t) + Aju(t) + BU/(t) + arv(t) =0

V'(t) + Aov(t) + apu(t) = o

» above results can be generalized replacing (H3) with
0 < aqas < wiws
» E(U) == apEq(u,p) + a1 Ex(v, Q) + arap(u, v)
> GE(U(D) = —az| B'2u/(1)2
» cannot take aians =0
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Indirect damping for coupled systems

I—concluding remarks

why not ay = 07

> letAi=A=A
with positive eigenvalues wx — +o00 and eigenspaces (Zk)k>1

> B =23l with0 < 8 < \/wy, and set \x = /wi — (2

cone
=
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Indirect damping for coupled systems

Lconcluding remarks

why not oy = 07?

> letAi =A=A
with positive eigenvalues wx — +o00 and eigenspaces (Zk)k>1

> B =20l with0 < 3 < \/wy, and set \x = /wi — (2
» the equation u”(f) + Au(t) + 26u'(t) = 0 with initial conditions

u0)=u"=> ", vO)=u"=> ui, ueZ

k>1 k>1
admits the solution

up + pul

u(t) = e * Z {uﬁ cos(Axt) + »

sin(Akt)]
k>1
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L

concluding remarks

why not oy = 07?

> letAi =A== A
with positive eigenvalues wx — +o00 and eigenspaces (Zk)k>1
> B =20l with0 < 3 < \/wy, and set \x = /wi — (2
» the equation u”(f) + Au(t) + 26u'(t) = 0 with initial conditions
u0)=u"=> ", vO)=u"=> ui, ueZ

k>1 k>1
admits the solution

up + pul

u(t) = e * Z {uﬁ cos(Axt) + »

sin(Akt)]
k>1

» utyezy for WWez and u'eZ
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Indirect damping for coupled systems

I—concluding remarks

on the other hand, the solution to
v'(t) + Av(t) + au(t) = 0 (1)
is given by v(t) = v4(t) + va(t) € Z; + Z;* where

V(1) + wivi () + au(t) = 0
vY(t) + Ava(t) = 0
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L

concluding remarks

on the other hand, the solution to
v'(t) 4+ Av(t) + au(t) = 0 (1)
is given by v(t) = v4(t) + va(t) € Zy + Z;* where

V{/(t) +wivi(t) + au(t) =0
v(2) + Ava(t) = 0

thus, the energy

E(va(t), va(1)) = 5 (Iva(D)? + (Ava(1), va(1))) = const

N =
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L

concluding remarks

on the other hand, the solution to
v'(t) 4+ Av(t) + au(t) = 0 (1)

is given by v(t) = v4(t) + va(t) € Zy + Z;* where

V{/(t) +wivi(t) + au(t) =0
v(2) + Ava(t) = 0

thus, the energy

E(va(1), va(1)) = % (Iva(8)|? + (Ava(t), va(t))) = const

hence, v° ¢ Z;, v! ¢ Z; ensure that the system is not stabilizable
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concluding remarks

open problems

» study localized damping with hybrid boundary conditions
» consider boundary control with hybrid boundary conditions
» obtain similar decay rates for problems in exterior domains
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Lconcluding remarks

open problems

» study localized damping with hybrid boundary conditions
» consider boundary control with hybrid boundary conditions
» obtain similar decay rates for problems in exterior domains

Thank you for your attention
Danke!
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