Lie-Algebren 12. (und letztes) Übungsblatt Abgabe bis Mittwoch, 1.2.2016 (in Vorlesung oder Übung) WiSe 2015/16 Dr. Thorsten Weist Dr. Magdalena Boos

Aufgabe 1. (6 Zusatzpunkte) Es seien \mathfrak{g} eine halbeinfache Lie-Algebra und $\alpha, \beta \in \Phi$ zwei lineare unabhängige Wurzeln bezüglich einer Cartan-Unteralgebra $\mathfrak{h} \subseteq \mathfrak{g}$. Es seien die natürlichen Zahlen r_{\min} und r_{\max} wie in der Vorlesung definiert. Zeigen Sie:

- a) Es gilt genau dann $\beta + r \cdot \alpha \in \Phi$, wenn $r_{\min} \leq r \leq r_{\max}$.
- b) Es gilt $\langle \beta, \alpha \rangle = -r_{\min} r_{\max}$.
- c) Der α -Faden durch β ist höchstens 4-elementig.

Aufgabe 2. (6 Zusatzpunkte) Zeigen Sie, dass die Vereinigung von endlich vielen Hyperflächen eines euklidischen Vektorraums V immer eine echte Teilmenge von V ist.

Aufgabe 3. (6 Zusatzpunkte) Es sei (E, Φ) ein Wurzelsystem. Zeigen Sie:

- a) (E, Φ) ist genau dann irreduzibel, wenn (E, Φ) keine disjukte Vereinigung von zwei Wurzelsystemen ist, das heißt, wenn es keine direkte Summenzerlegung $E = E_1 \oplus E_2$ sowie keine disjunkte Vereinigung $\Phi = \Phi_1 \cup \Phi_2$ gibt, so dass (E_1, Φ_1) und (E_2, Φ_2) Wurzelsysteme sind.
- b) (E, Φ) ist genau dann irreduzibel, wenn im zugehörigen Dynkin-Diagramm alle Punkte verbunden sind (das bedeutet, dass für je zwei Punkte ein Weg aus Kanten existiert, der beide Punkte verbindet). Bemerkung: Das Dynkin-Diagramm heißt dann zusammenhängend.

Aufgabe 4. (6 Zusatzpunkte) Es sei auf dem \mathbb{R}^n eine Bilinearform definiert durch

$$(e_i, e_j) = \begin{cases} 2, & \text{falls } i = j, \\ -1, & \text{falls } |i - j| = 1, \\ 0 & \text{sonst.} \end{cases}$$

Zeigen Sie:

- a) Die Bilinearform (_, _) ist positiv definit.
- b) Die Menge

$$\Phi := \{ \pm v_{i,j} \mid 1 \le i \le j \le n \}$$

ist für $v_{i,j}:=e_i+e_{i+1}+\ldots+e_j$ und bezüglich des Skalarprodukts (_, _) ein Wurzelsystem.