Lie-Algebren 10. Übungsblatt Abgabe bis Mittwoch, 18.1.2016 (in Vorlesung oder Übung) WiSe 2015/16 Dr. Thorsten Weist Dr. Magdalena Boos

Aufgabe 1. (6 Punkte) Zeigen Sie, dass die Menge der Diagonalmatrizen \mathfrak{h} in $\mathfrak{sp}_{2n}(\mathbf{C})$ eine *n*-dimensionale Cartan-Unteralgebra ist.

Berechnen Sie die Menge der Wurzeln von $\mathfrak{sp}_{2n}(\mathbf{C})$ bezüglich \mathfrak{h} .

Aufgabe 2.(6 Punkte) Zeigen Sie, dass jede 3-dimensionale komplexe halbeinfache Lie-Algebra isomorph zur $\mathfrak{sl}_2(\mathbf{C})$ ist. Was kann man in Dimension 4 sagen?

Aufgabe 3. (6 Punkte) Zeigen Sie, dass jede Cartan-Unteralgebra von $\mathfrak{sl}_2(\mathbf{C})$ bereits 1-dimensional ist.

Aufgabe 4. (6 Punkte) Es seien \mathfrak{g} halbeinfach und \mathfrak{h} eine Cartan-Unteralgebra. Es sei weiterhin für $h \in \mathfrak{h}$ der Zentralisator $C_{\mathfrak{g}}(h) := \{g \in \mathfrak{g} \mid [g,h] = 0\}$ definiert.

Zeigen Sie:

- a) $C_{\mathfrak{g}}(h)$ ist reduktiv (vgl. Übungsblatt 7).
- b) Es gibt ein $h \in \mathfrak{h}$, so dass $C_{\mathfrak{g}}(h) = \mathfrak{h}$.

Finden Sie ein Element $h \in \mathfrak{sl}_n(\mathbf{C})$ für das $C_{\mathfrak{g}}(h) = \mathfrak{h}$ gilt, hierbei sei \mathfrak{h} die Cartan-Unteralgebra der Diagonalmatrizen.