Prof. Dr. M. Reineke Dr. M. Boos

Übungen zur Vorlesung "Kommutative Algebra" 7. Übungsblatt

Abgabe am 3.12.2014 bis 16 Uhr (in der Übung oder im BK65)

Aufgabe 1. Es seien $(A, +, \cdot)$ ein Ring und M, N, P A-Moduln. Zeigen Sie, dass die folgenden Abbildungen wohldefinierte Isomorphismen sind:

1.
$$\begin{array}{ccc} (M \otimes_A N) \otimes_A P & \to & M \otimes_A N \otimes_A P \\ (x \otimes y) \otimes z & \mapsto & x \otimes y \otimes z \end{array}$$

2.
$$M \otimes_A N \otimes_A P \rightarrow M \otimes_A (N \otimes_A P)$$

 $x \otimes y \otimes z \mapsto x \otimes (y \otimes z)$

3.
$$(M \oplus_A N) \otimes_A P \rightarrow (M \otimes_A P) \oplus (N \otimes_A P)$$

 $(x,y) \otimes z \mapsto (x,z) \otimes (y,z)$

$$4. \quad \begin{array}{ccc} A \otimes_A M & \to & M \\ a \otimes x & \mapsto & a \cdot x \end{array}$$

Aufgabe 2. Es seien $(A, +, \cdot)$ und $(B, +, \cdot)$ zwei Ringe, M ein A-Modul, P ein B-Modul und N ein (A, B)-Bimodul.

Zeigen Sie:

- 1. $M \otimes_A N$ ist auf natürliche Weise ein B-Modul.
- 2. $N \otimes_B P$ ist auf natürliche Weise ein A-Modul.
- 3. Es gibt einen kanonischen Isomorphismus

$$(M \otimes_A N) \otimes_B P \cong M \otimes_A (N \otimes_B P)$$

von (A, B)-Bimoduln.

Aufgabe 3. Es seien $(A, +, \cdot)$ und $(B, +, \cdot)$ zwei Ringe, $f: A \to B$ ein Ringhomomorphismus sowie M ein endlich erzeugter A-Modul.

Zeigen Sie, dass dann der Modul $M_B = B \otimes_A M$, der durch Erweiterung der Skalare entsteht, als B-Modul endlich erzeugt ist.

Aufgabe 4. Es seien $(A, +, \cdot)$ ein Ring, \mathfrak{a} ein Ideal und M ein A-Modul. Zeigen Sie, dass $(A/\mathfrak{a}) \otimes_A M$ isomorph zu $M/\mathfrak{a}M$ ist.

Aufgabe 5. Es sei $(A,+,\cdot)$ ein lokaler Ring mit maximalem Ideal \mathfrak{m} . Es seien weiter endlich erzeugte A-Moduln M und N gegeben, für die $M\otimes_A N=0$ gelte.

Zeigen Sie, dass dann schon M=0 oder N=0 gilt. (Tipp: Nutzen Sie Aufgabe 4, um zu zeigen, dass $M_k:=A/\mathfrak{m}\otimes_A M\cong M/\mathfrak{m}M$ gilt. Zeigen Sie, dass aus $M\otimes_A N=0$ bereits $M_k=0$ oder $N_k=0$ folgt. Ist $M_k=0$, dann folgt mit Nakayamas Lemma schon M=0.)