Prof. Dr. M. Reineke Dr. M. Boos

Übungen zur Vorlesung "Kommutative Algebra" 11. Übungsblatt

Abgabe am 14.1.2015 bis 16 Uhr (in der Übung oder im BK65)

Aufgabe 1. Es sei k ein Körper.

Zeigen Sie:

- 1. M := k((t))/k[[t]] ist ein k[[t]]-Modul.
- 2. Für $n \ge 1$ ist $M_n := t^{-n}k[[t]]/k[[t]]$ ein k[[t]]-Untermodul von M.
- 3. Abgesehen von den Moduln M_n gibt es keine weiteren echten k[[t]]Untermoduln von M.

Aufgabe 2. Es sei A ein Ring.

Zeigen Sie:

- 1. Ist M ein noetherscher A-Modul und $u:M\to M$ ein surjektiver Modulhomomorphismus, dann ist u bereits ein Isomorphismus. (Tipp: Betrachten Sie die Untermoduln $\operatorname{Ker}(u^n)$ für $n\geq 1$.)
- 2. Ist N ein artinscher A-Modul und $v:N\to N$ ein injektiver Modulhomomorphismus, dann ist v bereits ein Isomorphismus. (Tipp: Betrachten Sie die Quotientenmoduln $\operatorname{Coker}(v^n)$ für $n\geq 1$.)

Aufgabe 3. Es seien A ein Ring und M ein A-Modul. Jede nicht-leere Menge endlich-erzeugter Untermoduln von M habe ein maximales Element bezüglich der Inklusionsrelation. Zeigen Sie, dass M dann ein noetherscher Modul ist.

Aufgabe 4. Es seien A ein Ring, M ein noetherscher A-Modul und \mathfrak{a} der Annulator von M in A.

Zeigen Sie, dass dann A/\mathfrak{a} ein noetherscher Ring ist. (Tipp: Realisieren Sie Ann(M) als Kern eines passenden Modulhomomorphismus.)

Gilt die analoge Aussage auch, wenn Sie "noethersch" durch "artinsch" ersetzen?