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Wenn CD aber AB nicht mißt,

und man nimmt bei AB, CD abwechselnd

immer das kleinere vom größeren weg,

dann muß (schließlich) eine Zahl übrig bleiben,

die die vorangehende mißt.

Eukléıdēs — Euklid von Alexandria

‘Stoicheia’ — Die Elemente, Buch VII, §2.
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1 Introduction: Pythagorean triples

(1.1) Pythagorean triples. We consider the diophantine equation X2 +
Y 2 = Z2, that is we look for solutions over the integers Z [Diophant, ∼250].
To exclude trivialities, we aim at describing the set of all non-trivial solutions
[x, y, z] ∈ Z3 such that xyz 6= 0: First, we may of course assume that x, y, z ∈ N.

Next, if d := gcd+(x, y) ∈ N, then we have d2 | x2 and d2 | y2, hence from
z2 = x2 + y2 we infer that d2 | z2 as well, implying that d | z. Thus letting
x′ := x

d ∈ N and y′ := x
d ∈ N and z′ := x

d ∈ N, we get a primitive solution
[x′, y′, z′] ∈ N3, that is x′ and y′ are coprime in the sense that gcd+(x′, y′) = 1.

Now let [x, y, z] ∈ N3 be a primitive solution. Then from x and y being coprime
we infer that gcd+(x, z) = gcd+(y, z) = 1 as well.

Assume that x and y are both odd, then there are r, s ∈ {±1} and k, l ∈ N0 such
that x = r+ 4k and y = s+ 4l. Then we have z2 = x2 + y2 = r2 + s2 + 4(2rk+
2sl + 4k2 + 4l2) = 2 + 4m, for some m ∈ N0, saying that z2 is even, but not
divisible by 4. But if 2 | z2, then 2 | z as well, hence 4 | z2, a contradiction.

Thus we infer that exactly one of x and y is even. We may assume that 2 | x.
Then from z2 = x2 + y2, since x and hence x2 are even, and y and hence y2 are
odd, we infer that z2 and hence z are odd. Note that z > y.

Thus both z + y and z − y are even, hence 2 | gcd+(z + y, z − y). Moreover, if
d ∈ gcd+(z+y, z−y), then d | (z+y)+(z−y) = 2z and d | (z+y)−(z−y) = 2y
imply that d | gcd+(2z, 2y) = 2. Thus we conclude that gcd+(z+ y, z− y) = 2.

In other words, we have z+y
2 , z−y2 ∈ N such that gcd+( z+y2 , z−y2 ) = 1.

We have z+y
2 ·

z−y
2 = z2−y2

4 = z2−y2
4 = (x2 )2, where x

2 ∈ N. Thus from z+y
2

and z−y
2 being coprime we infer that both z+y

2 and z−y
2 are squares themselves.

Hence there are a, b ∈ N such that a2 = z+y
2 and b2 = z−y

2 , where we necessarily

have a > b and gcd+(a, b) = 1. This entails z = z+y
2 + z−y

2 = a2 + b2 and

y = z+y
2 −

z−y
2 = a2 − b2, and x2 = 4 · z+y2 ·

z−y
2 = 4a2b2, implying x = 2ab.

Finally, let r, s ∈ {0, 1} and k, l ∈ N0 such that a = r+ 2k and b = s+ 2l. Then
we have z = a2 + b2 = r2 + s2 + 4(rk+ sl+ k2 + l2), hence from z being odd we
infer that [r, s] ∈ {[0, 1], [1, 0]}, that is exactly one of a and b is even. Hence we
have shown the major part of the following:

Theorem: [Euclid]. Let [x, y, z] ∈ N3 be a primitive solution ofX2+Y 2 = Z2,
such that x is even. Then there are uniquely determined a > b ∈ N being
coprime of opposite parity, such that x = 2ab and y = a2 − b2 and z = a2 + b2.

Conversely, any pair [a, b] ∈ N having the above properties gives rise to a prim-
itive solution such that x is even. Thus we have a one-to-one correspondence
between the primitive solutions as above, and the pairs [a, b] as above.
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Proof. We still have to show uniqueness: If [a, b] gives rise to [x, y, z] as above,
then we have a2 = z+y

2 and b2 = z−y
2 , hence a2 and b2, and thus a and b are

uniquely determined.

As for the converse, let a > b ∈ N be coprime of opposite parity, and let
x := 2ab ∈ N and y := a2 − b2 ∈ N and z := a2 + b2 ∈ N. Then we have
z2 − y2 = (a2 + b2)2 − (a2 − b2)2 = 4a2b2 = x2. Moreover, x is even, and
since exactly one of a and b is even, we infer that y is odd. Finally, let d :=
gcd+(x, y) ∈ N. Then we have d | z = a2 + b2, hence from d | y = a2 − b2 we
conclude that d | y+ z = 2a2 and d | y− z = 2b2, thus d | gcd+(2a2, 2b2) = 2,
entailing that d ∈ {1, 2}. Now d divides y, which is odd, hence we infer d = 1. ]

In particular, the equation X2+Y 2 = Z2 has infinitely many non-trivial integral
solutions. For example, for k ∈ N let a := k + 1 and b := k. Then the pair
[a, b] has the desired properties, and yields the primitive triple [2ab, a2−b2, a2 +
b2] = [2k2 + 2k, 2k + 1, 2k2 + 2k + 1]. In particular, we recover the well-known
smallest primitive triples from k = 1 and k = 2 as [x, y, z] = [4, 3, 5] and
[x, y, z] = [12, 5, 13], respectively.

This series of solutions was already known to Pythagoras, who came to study
the equation X2 + Y 2 = Z2 from a geometrical point of view: He was looking
for right-angled plane triangles with commensurable edges, that is, assuming
the longest edge having length 1, the shorter edges have rational length. This
essentially amounts to finding right-angled triangles with integral edge lengths,
in other words non-trivial integral solutions of the equation X2 + Y 2 = Z2.

(1.2) Fermat’s Last Theorem. Similarly, for any n ∈ N we may consider
the diophantine equation Xn + Y n = Zn, and again the aim is to describe the
set of all non-trivial solutions [x, y, z] ∈ Z3 such that xyz 6= 0. Now Fermat
[1637] conjectured that the latter do not exist whenever n ≥ 3. (Actually, he
claimed that he had a proof, but unfortunately he kept the proof for himself.)
It is immediate that in order to settle Fermat’s Conjecture to the affirmative,
it suffices to consider the cases n = 4 and n = p an odd prime.

From a geometrical point of view, one might ask whether there are right-angled
plane triangles with integral edge lengths, such that the shorter ones addition-
ally are squares. This amounts to finding non-trivial integral solutions of the
equation X4 +Y 4 = Z2. It was shown by Euler [1738], that the latter do not
exist. In particular, this settles Fermat’s Conjecture for the case n = 4.

Fermat’s Conjecture was proven for the cases p = 3 and p = 5 by Euler [1753]
and Dirichlet, Legendre [1828], respectively. After that it turned out that
Fermat’s Conjecture was one of the hardest problems in all of number theory.
The attempts to solve it spurred lots of developments, starting with the work
of Kummer [≥ 1843]. But the final strike was only done by Wiles, Taylor–
Wiles [1995], who proved a much more general number theoretic conjecture,
which as a consequence settled Fermat’s Conjecture for all odd primes p.
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I Rings

2 Commutative rings

(2.1) Commutative rings. A set R together with an addition +: R×R→
R : [a, b] 7→ a+ b and a multiplication · : R×R→ R : [a, b] 7→ ab fulfilling the
following conditions is called a commutative ring: i) (R,+) is a commutative
group, with neutral element 0; ii) (R, ·) is a commutative monoid, that is
commutative and associative, with neutral element 1; and iii) distributivity
a(b+ c) = (ab) + (ac) holds, for a, b, c,∈ R.

For all a ∈ R we have 0a = (0 + 0)a = (0a) + (0a), hence 0a = 0; and we have
a + (−1)a = (1 + (−1))a = 0a = 0, hence −a = (−1)a; thus for all a, b ∈ R
we have −(ab) = (−1)ab = (−a)b. Moreover, we have the binomial formula
(a+ b)n =

∑n
i=0

(
n
i

)
aibn−i, for all n ∈ N.

The standard example of a commutative ring of course are the integers Z; but
N or N0 are not (commutative) rings. Here is a pathological example:

Let R := {0} with addition and multiplication given by 0+0 := 0 and 0 ·0 := 0,
respectively, and 1 := 0, then R is a commutative ring, called the zero ring.
Conversely, for any commutative ring R fulfilling 1 = 0 we have a = 1a = 0a = 0
for all a ∈ R, hence we have R = {0}. Thus for any commutative ring R 6= {0}
we in particular have 1 6= 0.

(2.2) Units and zero-divisors. a) Let R be a commutative ring. An element
a ∈ R is called invertible or a unit, if there is an inverse a−1 ∈ R such that
aa−1 = 1. In this case, if a′ ∈ M also is an inverse, we have a′ = 1 · a′ =
a−1aa′ = a−1 · 1 = a−1, hence the inverse is uniquely determined.

Let R∗ ⊆ R be the set of units. Then we have 1 ∈ R∗, where 1−1 = 1; for
all a, b ∈ R∗ from ab(b−1a−1) = 1 we conclude that ab ∈ R∗, where (ab)−1 =
b−1a−1; and we have (a−1)−1 = a, thus a−1 ∈ R∗. Hence R∗ ⊆ R is a group,
called the group of multiplicative units.

Hence for R 6= {0} we have 1 ∈ R∗ ⊆ R \ {0}. A commutative ring R 6= {0}
such that R∗ = R \ {0} is called a field. Well-known examples are the rational
numbers Q, the real numbers R, and the complex numbers C; but we have
Z∗ = {±1}, hence Z is not a field, of course.

b) An element a ∈ R is called a divisor of b ∈ R, and b is called a multiple of
a, if there is c ∈ R such that ac = b; we write a | b. We have a | 0 and a | a.
Moreover, we have u | a for all u ∈ R∗; and if a | u for some u ∈ R∗, then we
have a | 1 as well, that is a ∈ R∗. Elements a, b ∈ R are called associate, if
a | b and b | a; we write a ∼ b, in particular ∼ is an equivalence relation on R.

An element 0 6= a ∈ R such that there is 0 6= b ∈ R such that ab = 0 is called
a zero-divisor in R. If R does not contain any zero-divisors, that is if ab = 0
implies a = 0 or b = 0, for all a, b ∈ R, then R is called an integral domain.
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For example, Z is an integral domain, of course.

c) We elucidate the relationship between units and zero-divisors in R:

If a ∈ R is a unit, then from ab = 0, for any b ∈ R, we get b = a−1ab = 0, hence
a is not a zero-divisor. Hence the set of units and the set of zero-divisors of R
are disjoint. In particular, any field is an integral domain.

Lemma. a) For 0 6= a ∈ R let λa : R→ R : x 7→ ax. Then λa is injective if and
only if a is not a zero-divisor, and λa is surjective if and only if a is a unit.

b) Let R be finite. Then any non-zero element of R is either a zero-divisor or
a unit. In particular, if R is an integral domain, then R is a field.

Proof. a) If a is a zero-divisor, then there is 0 6= b ∈ R such that ab = 0, thus
ab = 0 = a · 0 shows that λa is not injective. Conversely, if there are b 6= c ∈ R
such that ab = ac, then a · (b− c) = 0 shows that a is a zero-divisor.

If a is a unit, then for any b ∈ R we have a · a−1b = b, showing that λa is
surjective. Cconversely, if λa is surjective, then there is b ∈ R such that ab = 1,
showing that a is a unit.

b) For any 0 6= a ∈ R the map λa is injective if and only if it is surjective. ]

The disjointness of the set of units and the set of zero-divisors can be rephrased
by saying that for 0 6= a ∈ R the surjectivity of the map λa implies its injectivity.
The other implication does not hold in general, as the example of Z shows.

In particular, this shows that for 0 6= a ∈ R which is not a zero-divisor we have
the following cancellation rule: From ab = ac, for some b, c ∈ R, we get b = c.
Note that this rule becomes trivial if a is a unit, thus the point here is that it
continues to hold under the weaker assumption of a not being a zero-divisor.

(2.3) Ideals. a) Let R be a commutative ring. Then a subset S ⊆ R being
an additive subgroup and a multiplicative submonoid is called a subring; in
particular we have 1 ∈ S. For example, Z ⊆ Q ⊆ R ⊆ C is a chain of subrings.

If {Si ⊆ R; i ∈ I} is a set of subrings, where I 6= ∅ is an index set, then the
intersection S :=

⋂
i∈I Si ⊆ R is a subring again. Hence for any subset M ⊆ R

the set
⋂
{S ⊆ R subring;M ⊆ S} ⊆ R is the smallest subring of R containing

M , being called the subring of R generated by M .

b) An additive subgroup I ⊆ R, such that for all a ∈ I we have aR := {ab ∈
R; b ∈ R} ⊆ I as well, is called an ideal of R; we write I ER. In particular, we
have {0}ER and RER. Hence for any ideal I ER we have I = R if and only
if 1 ∈ I; in particular, I is a subring of R if and only if I = R.

If {Ii E R; i ∈ I} is a set of ideals, where I 6= ∅ is an index set, then the
intersection I :=

⋂
i∈I Ii ER is an ideal again. Hence for any subset S ⊆ R the
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set 〈S〉 = 〈S〉R :=
⋂
{I ER;S ⊆ I}ER is the smallest ideal of R containing S,

being called the ideal of R generated by S.

More intrinsically, we have 〈S〉 = {
∑n
i=1 aibi ∈ R;n ∈ N0, ai ∈ S, bi ∈ R} E R;

hence we also write 〈S〉 =
∑
a∈S aR:

Let J ⊆ R denote the right hand side. If I E R is any ideal such that S ⊆ I,
then, since I is closed with respect to addition, and we have aR ⊆ I for all
a ∈ S, we have J ⊆ I as well; hence taking intersections we conclude that
J ⊆ 〈S〉. Conversely, J itself is closed with respect to addition, we have 0 ∈ J
being represented by the empty sum, and for any a ∈ J we have aR ⊆ J as well,
hence in particular −a = (−1) · a ∈ J ; thus JCR is an ideal, and since S ⊆ J
we infer that J is amongst the ideals intersecting in 〈S〉, thus 〈S〉 ⊆ J . ]

For any a ∈ R the ideal 〈a〉 = aRER is called the associated principal ideal.
Hence for a, b ∈ R we have bR ⊆ aR if and only if a | b; in particular we have
aR = bR if and only if a ∼ b. For example, we have 〈∅〉 = 〈0〉 = 0 ·R = {0} and
〈1〉 = 1 ·R = R; and for n ∈ Z we have 〈n〉 = nZ = {kn ∈ Z; k ∈ Z}E Z.

Given I, JER, then I+J := 〈I, J〉 = {a+b ∈ R; a ∈ I, b ∈ J}ER is called their
sum. Moreover, IJ := 〈ab ∈ R; a ∈ I, b ∈ J〉 = {

∑n
i=1 aibi ∈ R;n ∈ N0, ai ∈

I, bi ∈ J}ER is called their product; we have IJ ⊆ I ∩ J ⊆ I ∪ J ⊆ I + J .

In particular, for principal ideals these constructions yield the following: For
a, b, c ∈ R we have aR + bR ⊆ cR if and only if both c | a and c | b; we have
cR ⊆ aR∩bR if and only if both a | c and b | c; and we have aR ·bR = abRER.

(2.4) Homorphisms. LetR and S be commutative rings. Then a map ϕ : R→
S fulfilling the following conditions is called a (ring) homomorphism: We
have i) additivity ϕ(a + b) = ϕ(a) + ϕ(b), for a, b ∈ R; ii) multiplicativity
ϕ(ab) = ϕ(a)ϕ(b), for a, b ∈ R; and iii) unitarity ϕ(1R) = 1S .

In other words, condition (i) says that ϕ is a homomorphism of additive groups,
and conditions (ii) and (iii) say that ϕ is a homomorphism of multiplicative
monoids. We will see below that, since S is an additivite group, additivity
implies ϕ(0R) = 0S , while multiplicativity alone does not imply unitarity.

If ϕ is bijective, then it is called a (ring) isomorphism, in which case we write
R ∼= S; note that in this case ϕ−1 : S → R is a ring isomorphism again.

For example, there is a unique homomorphism R→ {0}, and there is a (unique)
homomorphism {0} → R if and only if R = {0}.

Proposition. Let ϕ : R→ S be a ring homomorphism. Then we have:

a) The image im(ϕ) ⊆ S is a subring of S

b) The kernel ker(ϕ) := ϕ−1({0}) = {a ∈ R;ϕ(a) = 0} E R is an ideal of R.
Moreover, ϕ is injective if and only if ker(ϕ) = {0R}.
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Proof. a) By additivity im(ϕ) ⊆ S is closed with respect to addition. We
have ϕ(0R) = ϕ(0R + 0R) = ϕ(0R) + ϕ(0R), hence 0S = ϕ(0R) − ϕ(0R) =
ϕ(0R) + ϕ(0R) − ϕ(0R) = ϕ(0R), showing that 0S ∈ im(ϕ). Next we have
0S = ϕ(0R) = ϕ(a− a) = ϕ(a) + ϕ(−a), hence ϕ(−a) = −ϕ(a), for a ∈ R, thus
im(ϕ) ⊆ S is closed with respect to taking additive inverses. Thus im(ϕ) ⊆ S
is an additive subgroup. Similarly, by multiplicativity im(ϕ) ⊆ S is closed
with respect to multiplication, and we have 1S ∈ im(ϕ) by assumption. Hence
im(ϕ) ⊆ S is a multiplicative submonoid as well, and thus is a subring.

b) By additivity ker(ϕ) ⊆ R is closed with respect to addition. We have 0R ∈
ker(ϕ), and ϕ(−a) = −ϕ(a), for a ∈ R, implies that ker(ϕ) ⊆ R is closed with
respect to taking additive inverses. Thus ker(ϕ) ⊆ R is an additive subgroup.
Furthermore, for x ∈ ker(ϕ) and a ∈ R we have ϕ(xa) = ϕ(x)ϕ(a) = 0S , thus
xa ∈ ker(ϕ). This shows ker(ϕ) ·R ⊆ ker(ϕ), that is ker(ϕ) ER is an ideal.

Moreover, if ϕ is injective, then ker(ϕ) = ϕ−1({0S}) is a singleton set, hence
necessarily equals {0R}; conversely, for x, y ∈ R we have ϕ(x) = ϕ(y) ∈ S if
and only if ϕ(x − y) = 0S , that is x − y ∈ ker(ϕ), thus if ker(ϕ) = {0R} then
ϕ(x) = ϕ(y) entails x = y, implying that ϕ is injective. ]

Note that if S 6= {0}, then ϕ(1R) = 1S implies that 1R 6∈ ker(ϕ), thus ker(ϕ)CR.

(2.5) Quotient rings. Let R be a commutative ring, and let IER be an ideal.
Then MI := {[a, b] ∈ R2; a− b ∈ I} is an equivalence relation on R:

From a−a = 0 ∈ I, for a ∈ R, we conclude thatMI is reflexive; from a− b ∈ I,
for a,∈ R, we get b − a = −(a − b) ∈ I, hence MI is symmetric; and from
a − b, b − c ∈ I, for a, b, c ∈ R, we conclude that a − c = (a − b) + (b − c) ∈ I,
thus MI is transitive as well. ]

For a ∈ R let a = [a]I := {b ∈ R; [a, b] ∈ MI} = {b ∈ R; b− a ∈ I} = {a+ x ∈
R;x ∈ I} =: a + I ⊆ R be the associated equivalence class modulo I. For
a, b ∈ R being in the same equivalence class we also write a ≡ b (mod I). Let
R/I := {a+ I ⊆ R; a ∈ R} denote the set of equivalence classes. This gives rise
to the natural map νI : R→ R/I : a 7→ a+ I; note that νI is surjective.

Letting RI ⊆ R be a set of representatives of R/I, that is the natural map
νI induces a bijection RI → R/I, we have R =

∐
a∈RI

(a + I); in other words
R is the disjoint union of the distinct equivalence classes. Note that a set of
representatives always exists by the Axiom of Choice.

Proposition. Let R be a commutative ring and I ER.

Then R/I is a commutative ring, called the quotient ring of R with respect to
I, with addition (a+I)+(b+I) := (a+b)+I and multiplication (a+I)·(b+I) :=
(ab)+I, for a, b ∈ R, with additive neutral element 0+I = I, the additive inverse
of a+ I being (−a) + I, and multiplicative neutral element 1 + I.

Moreover, the natural map νI : R→ R/I : a 7→ a+ I is a surjective ring homo-
morphism such that ker(νI) = I.



I Rings 7

Proof. We only have to show that addition and multiplication are independent
of the choice of representatives of the equivalence classes; then the rules of
arithmetic in R/I are inherited from those in R via the natural map:

Let a, a′, b, b′ ∈ R such that a+I = a′+I and b+I = b′+I, that is there x, y ∈ I
such that a′ = a+ x and b′ = b+ y. Hence we have a′+ b′ = (a+ b) + (x+ y) ∈
(a + b) + I and a′b′ = (a + x)(b + y) = ab + (ay + bx + xy) ∈ ab + I, thus
(a+ b) + I = (a′ + b′) + I and ab+ I = a′b′ + I.

In particular, the natural map becomes a ring homomorphism. Moreover, for
x ∈ I we have νI(x) = x+ I = I = 0 + I ∈ R/I, hence I ⊆ ker(νI); conversely,
for x ∈ ker(νI) we have x + I = νI(x) = 0 + I, hence x = x − 0 ∈ I, showing
that ker(νI) ⊆ I. ]

(2.6) Homomorphism Theorem. Let R and S be commutative rings, let
I ER, and let ϕ : R→ S be a ring homomorphism such that I ⊆ ker(ϕ).

Then there is an induced map ϕI : R/I → S : a + I 7→ ϕ(a), which is a ring
homomorphism and yields a factorisation ϕ = ϕI ◦ νI : R→ R/I → S.

Moreover, we have im(ϕI) = im(ϕ) ⊆ S and ker(ϕI) = ker(ϕ)/I = {x + I ∈
R/I;x ∈ ker(ϕ)}; thus ϕI is injective if and only if I = ker(ϕ).

In particular, we have a ring isomorphism ϕ := ϕker(ϕ) : R/ ker(ϕ)→ im(ϕ).

Proof. We show that ϕI is well-defined: Let a, a′ ∈ R such that a+ I = a′+ I,
that is a− a′ ∈ I ⊆ ker(ϕ), then ϕ(a− a′) = 0 implies ϕ(a) = ϕ(a′).

Now ϕI(a + b + I) = ϕ(a + b) = ϕ(a) + ϕ(b) = ϕI(a + I) + ϕI(a + I) and
ϕI(ab + I) = ϕ(ab) = ϕ(a)ϕ(b) = ϕI(a + I) · ϕI(a + I), for a, b ∈ R, and
ϕI(1+I) = ϕ(1) = 1, shows that ϕI is a ring homomorphism. The factorisation
holds by construction. Moreover, since νI is surjective we infer im(ϕI) = im(ϕ).

If x ∈ ker(ϕ) then ϕI(x + I) = ϕ(x) = 0, showing that ker(ϕ)/I ⊆ ker(ϕI);
conversely, if a ∈ R such that a+ I ∈ ker(ϕI), then we have ϕ(a) = ϕI(νI(a)) =
ϕI(a+ I) = 0, hence a ∈ ker(ϕ), and thus a+ I ∈ ker(ϕ)/I, entailing ker(ϕI) ⊆
ker(ϕ)/I. In particular, we have ker(ϕI) = {0 + I} if and only if I = ker(ϕ).
This in particular implies the final assertion. ]

Corollary: Isomorphism Theorem. Let R be a commutative ring and IER.

a) Let J ER where J ⊆ I. Then we have (R/J)/(I/J) ∼= R/I.

b) Let S ⊆ R be a subring. Then we have S/(S ∩ I) ∼= (S + I)/I.

Proof. a) We consider the surjective natural map νI : R → R/I : a 7→ a + I.
Then from J ⊆ I = ker(νI) we get the existence of a surjective induced map
(νI)

J : R/J → R/I : a + J 7→ a + I. We have ker((νI)
J) = ker(νI)/J = I/J E

R/J , hence the induced map (νI)J : (R/J)/(I/J)→ R/I is a ring isomorphism.
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b) We again consider the natural map νI : R→ R/I : a 7→ a+ I. Then, letting
S + I := {a + b ∈ R; a ∈ S, b ∈ I} ⊆ R, we have im(νI |S) = νI(S) = {a +
I ∈ R/I; a ∈ S} = {a + I ∈ R/I; a ∈ S + I} = (S + I)/I ⊆ R/I, and
ker(νI |S) = S ∩ ker(νI) = S ∩ I E S, hence the induced map νI |S : S/(S ∩ I)→
(S + I)/I : a+ (S ∩ I) 7→ a+ I is a ring isomorphism. ]

3 Integral domains

(3.1) Integral domains. a) Let R be an integral domain. We have a charac-
terisation of elements to be associate as follows: Elements a, b ∈ R are associate,
that is a | b and b | a, if and only if there is u ∈ R∗ such that b = au ∈ R:

From b = au for some u ∈ R∗ we have a | b and b | a. Conversely, if a | b
and b | a, then there are u, v ∈ R such that b = au and a = bv, thus a = auv,
implying a(1−uv) = 0, hence a = 0 or uv = 1, where in the first case a = b = 0,
and in the second case u, v ∈ R∗. ]

b) Let ∅ 6= S ⊆ R be a subset. Then d ∈ R such that d | a for all a ∈ S is
called a common divisor of S; any u ∈ R∗ always is a common divisor of S.
If for all common divisors b ∈ R of S we have b | d, then d ∈ R is called a
greatest common divisor of S.

Let gcd(S) ⊆ R be the set of all greatest common divisors of S. In general
greatest common divisors do not exist. But if gcd(S) 6= ∅, then it consists of an
associate class: If d, d′ ∈ gcd(S), then d | d′ and d′ | d, hence d ∼ d′. For a ∈ R
we have a ∈ gcd(a) = gcd(0, a); and elements a, b ∈ R such that gcd(a, b) = R∗

are called coprime.

Similarly, c ∈ R such that a | c for all a ∈ S is called a common multiple of
S. If for all common multiples b ∈ R of S we have c | b, then c ∈ R is called a
lowest common multiple of S.

Let lcm(S) ⊆ R be the set of all lowest common multiples of S. In general
lowest common multiples do not exist. But if lcm(S) 6= ∅, then it consists of an
associate class: If c, c′ ∈ lcm(S), then c | c′ and c′ | c, hence c ∼ c′. For a ∈ R
we have a ∈ lcm(a) = lcm(1, a).

c) An element 0 6= c ∈ R \ R∗ is called indecomposable or irreducible,
if c = ab implies a ∈ R∗ or b ∈ R∗ for all a, b ∈ R; otherwise c is called
decomposable or reducible. Hence if c ∈ R is indecomposable then all its
associates also are.

An element 0 6= c ∈ R \R∗ is called a prime, if c | ab implies c | a or c | b for
all a, b ∈ R. Hence if c ∈ R is a prime then all its associates also are.

Lemma. If c ∈ R is a prime, then c ∈ R is indecomposable.

Proof. Let c = ab for some a, b ∈ R, where since c | ab we may assume that
c | a, then from a | c we get a ∼ c, hence there is u ∈ R∗ such that au = c = ab,
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implying b = u ∈ R∗. ]

But the converse does not hold, that is an indecomposable element in general is
not a prime. We now introduce a class of integral domains in which the converse
indeed holds; it will turn out that Z belongs to this class:

(3.2) Factorial domains. Let R be an integral domain. Then R is called
factorial or a Gaussian domain, if any element 0 6= a ∈ R can be written
uniquely, up to reordering and taking associates, in the form a = u·

∏n
i=1 pi ∈ R,

where the pi ∈ R are indecomposable, n ∈ N0 and u ∈ R∗.
In this case, let PR ⊆ R be a set of representatives of the associate classes of
indecomposable elements of R; these exist by the Axiom of Choice. Then any
0 6= a ∈ R, up to reordering has a unique factorisation a = ua ·

∏
p∈PR

pνp(a),
where ua ∈ R∗ and νp(a) ∈ N0 is called the associated multiplicity.

We have νp(a) = 0 for almost all p ∈ PR, and
∑
p∈PR

νp(a) ∈ N0 is called the
length of the factorisation. Moreover, a is called squarefree if νp(a) ≤ 1 for
all p ∈ PR. For any subset ∅ 6= S ⊆ R \ {0} we have

∏
p∈PR

pmin{νp(a);a∈S} ∈
gcd(S), and provided S is finite we have

∏
p∈PR

pmax{νp(a);a∈S} ∈ lcm(S). But
note that in order to use this in practice, the factorisation of the elements of S
has to be found first.

Proposition. Any indecomposable element p of a factorial domainR is a prime.

Proof. Let a, b ∈ R such that p | ab, hence there is c ∈ R such that pc = ab.
We may assume that a, b 6∈ R∗, and since p is indecomposable we have c 6∈ R∗.
Let a =

∏
i≥1 ai ∈ R and b =

∏
j≥1 bj ∈ R and c =

∏
k≥1 ck ∈ R, where

ai, bj , ck ∈ R are indecomposable. This yields p ·
∏
k≥1 ck =

∏
i≥1 ai ·

∏
j≥1 bj ∈

R, thus uniqueness implies p ∼ ai for some i, or p ∼ bj for some j. ]

(3.3) Euclidean domains. a) An integral domain R is called Euclidean, if
R has a degree map δ : R \ {0} → N0 fulfilling the following condition: i) For
all a, b ∈ R such that b 6= 0 there are q, r ∈ R, called quotient and remainder
respectively, such that a = qb+ r, where r = 0 or δ(r) < δ(b); and ii) whenever
a, b ∈ R such that a | b 6= 0 then we have monotonicity δ(a) ≤ δ(b).
Note that no uniqueness assumption is made in i). Moreover, it actually suffices
to require condition i), then condition ii) can fulfilled as well; but in all the cases
we will encouter, condition ii) will be automatically fulfilled anyway:

Letting δ′ : R \ {0} → N0 obey to condition i), let δ : R \ {0} → N0 : a 7→
min{δ′(b) ∈ N0; b ∈ R \ {0}, a | b}. Then δ fulfills condition ii); and for a, b ∈ R
such that b 6= 0, letting 0 6= c ∈ R such that δ(b) = δ′(bc), there are q, r ∈ R
such that a = q(bc) + r = (qc)b+ r, where r = 0 or δ(r) ≤ δ′(r) < δ′(bc) = δ(b),
implying that condition i) is fulfilled as well. ]
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As a consequence of ii), we have δ(a) = δ(b) whenever a ∼ b 6= 0. Kind of
conversely, if a | b 6= 0 such that δ(a) = δ(b), then we have a ∼ b: Using i),
there are q, r ∈ R such that a = qb+r, where r = 0 or δ(r) < δ(b); but assuming
r 6= 0 from a | (a− qb) = r, usinf i) we get δ(a) ≤ δ(r) < δ(b), a contradiction;
hence we infer r = 0, that is b | a as well.

For example, any field K is Euclidean with respect to the degree map δ : K∗ →
N0 : x 7→ 0. But again our most prominent example is Z, which will turn out to
be Euclidean with respect to the degree map δ : Z \ {0} → N0 : z 7→ |z|.
b) The major feature of Euclidean domains is that greatest common divisors
always exist, and that they can be computed without factorising:

Given a, b ∈ R, a greatest common divisor r ∈ R and Bézout coefficients
s, t ∈ R such that r = sa+tb ∈ R can be computed by the extended Euclidean
algorithm (EEA); leaving out the steps indicated by ◦, needed to compute
the si, ti ∈ R, just yields a greatest common divisor:

• r0 ← a, r1 ← b
◦ s0 ← 1, s1 ← 0
◦ t0 ← 0, t1 ← 1
• i← 1
• while ri 6= 0 do
• ri+1 ← ri−1 mod ri # remainder
◦ qi ← ri−1 div ri # quotient
◦ si+1 ← si−1 − qisi
◦ ti+1 ← ti−1 − qiti
• i← i+ 1

• return [r; s, t]← [ri−1; si−1, ti−1]

Since δ(ri) > δ(ri+1) ≥ 0 for i ∈ N, there is l ∈ N0 such that rl 6= 0 and rl+1 = 0,
hence the algorithm terminates. We have ri+1 = ri−1−qiri, for all i ∈ {1, . . . , l},
hence ri = sia + tib for all i ∈ {0, . . . , l + 1}, thus r = rl = sa + tb. Finally,
r = rl ∈ gcd(rl, 0) = gcd(rl, rl+1) = gcd(ri, ri+1) = gcd(r0, r1) = gcd(a, b). ]

(3.4) Theorem: Euclid implies Gauss. Any Euclidean domain is factorial.

Proof. Let R be an Euclidean domain with degree map δ. We first show that
any 0 6= a ∈ R \ R∗ is a product of indecomposable elements: Assuming the
contrary, let a be chosen of minimal degree not having this property. Then a is
decomposable, hence there are b, c ∈ R \ R∗ such that a = bc. Thus by mono-
tonicity we have δ(b) < δ(a) and δ(c) < δ(a), implying that both b and c are
products of indecomposable elements, hence a is a product of indecomposable
elements as well, a contradiction.

In order to show uniqueness of factorisations, we next show that any indecom-
posable element 0 6= a ∈ R \R∗ is a prime: Let b, c ∈ R such that a | bc, where
may assume that a - b. Then we have 1 ∈ gcd(a, b), hence there are Bézout
coefficients s, t ∈ R such that 1 = sa+ tb, implying that a | sac+ tbc = c.
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Now let a = u ·
∏n
i=1 pi ∈ R, where the pi are indecomposable, n ∈ N0 and

u ∈ R∗. We proceed by induction on n ∈ N0, where we have n = 0 if and
only if a ∈ R∗. Hence let n ≥ 1, and let a =

∏m
j=1 qj ∈ R, where the qj

are indecomposable and m ∈ N. Since pn is indecomposable, and hence is a
prime, we may assume that pn | qm, hence since qm is indecomposable we infer

pn ∼ qm. Thus we have u′ ·
∏n−1
i=1 pi =

∏m−1
j=1 qj ∈ R, for some u′ ∈ R∗, and we

are done by induction. ]

(3.5) Theorem. Any Euclidean domain is a principal ideal domain, that is
an integral domain all of whose ideals are principal.

Proof. Let R be Euclidean with degree map δ, and let I E R, where we may
assume that I 6= {0}. Letting 0 6= x ∈ I be of minimal degree, we show that
I = xR: We of course have xR ⊆ I, hence it remains to show the converse. To
this end let y ∈ I. Then there are q, r ∈ R such that y = qx + r, where r = 0
or δ(r) < δ(x). Hence we have r = y− qx ∈ I, and from the minimality of x we
infer that r = 0. This shows y = xq ∈ xR, and thus I ⊆ xR. ]

(3.6) Theorem. Any principal ideal domain is factorial. ]

The converse implication is not true in general, as the example of the polynomial
ring Z[X] shows: By the Gauss Lemma (which we do not prove here either),
saying that a polyomial ring over a factorial domain is factorial again, Z[X]
is factorial, but the ideal I := 〈2, X〉 E Z[X] is not principal: Assume that
I = 〈d〉 for some d ∈ Z[X], then we have d | 2 and d | X, from which, since
1 ∈ gcd(2, X), we infer d | 1, entailing I = 〈1〉 = Z[X]; but ϕ0 : Z[X] →
Z/2Z : X 7→ 0 gives rise to a surjective ring homomorphism such that I ⊆
ker(ϕ0), hence by the homomorphism theorem we have Z[X]/ ker(ϕ0) ∼= Z/2Z,
entailing I ⊆ ker(ϕ0) 6= Z[X], a contradiction.

In conclusion we have the following inclusions between the various classes of rings
we have seen: {fields} ⊂ {Euclidean domains} ⊂ {principal ideal domains} ⊂
{factorial domains} ⊂ {integral domains} ⊂ {commutative rings}. The exam-
ples presented so far or later on show that all inclusions are proper.

(3.7) Theorem. Let R be a factorial domain, let a1, . . . , ak ∈ R \ {0} where
k ∈ N, and let d ∈ gcd(a1, . . . , ak) and c ∈ lcm(a1, . . . , ak). Then for the
associated principal ideals the following holds:

a) We have
⋂k
i=1 aiR = cRER.

b) If R is a principal ideal domain, then we have
∑k
i=1 aiR = dRER; in particu-

lar, there are Bézout coefficients s1, . . . , sk ∈ R such that d =
∑k
i=1 aisi ∈ R.

c) We have
⋂k
i=1 aiR =

∏k
i=1 aiRER if and only if the elements a1, . . . , ak are

pairwise coprime.
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Proof. a) For x ∈ R we have x ∈
⋂k
i=1 aiR if and only if ai | x for all

i ∈ {1, . . . , k}, which holds if and only if c | x, that is x ∈ cR.

b) Since d | ai for all i ∈ {1, . . . , k}, we have
∑k
i=1 aiR ⊆ dR anyway.

Conversely, since R is a principal ideal domain, there is d′ ∈ R such that
d′R =

∑k
i=1 aiR. Hence, since d′ | ai for all i ∈ {1, . . . , k}, we have d′ | d, thus

we get dR ⊆ d′R =
∑k
i=1 aiR.

c) We have cR =
⋂k
i=1 aiR =

∏k
i=1 aiR if and only if c ∼

∏k
i=1 ai, that is∏

p∈PR
pmax{νp(ai);i∈{1,...,k}} ∼

∏
p∈PR

p
∑k

i=1 νp(ai), which holds if and only if

max{νp(ai); i ∈ {1, . . . , k}} =
∑k
i=1 νp(ai), for all p ∈ PR, where the latter

holds if and only if νp(ai) > 0 for at most one of the ai, for all p ∈ PR, that is
the elements a1, . . . , ak are pairwise coprime. ]

II Numbers

4 The integers

The following fundamental theorem was essentially known to Euclid and Leg-
endre [1797], but was first proven by Gauss [1798]. The assertion also follows
from (3.4), together with the fact that Z is Euclidean, see (4.4). Still, following
Zermelo [1928], we give a direct proof only using the principle of induction:

(4.1) Theorem: Fundamental Theorem of Arithmetic. Z is factorial.

Proof. As for the existence of factorisations, we may assume that n ≥ 2. If n
is indecomposable, we are done, in particular settling the case n = 2. If n is
decomposable, then there are 2 ≤ a, b < n such that n = ab, hence both a and
b have a factorisation, thus n has a factorisation as well.

As for uniqueness of factorisations, we assume that n =
∏r
i=1 pi =

∏s
j=1 qj ∈

N, where r, s ∈ N0, and 2 ≤ p1 ≤ · · · ≤ pr and 2 ≤ q1 ≤ · · · ≤ qs are
indecomposable. The case n = 1 being clear, we may assume that n ≥ 2, hence
both r, s ≥ 1. Assume that p1 6= q1, where we may assume that p1 < q1, and
let n′ := (q1− p1) ·

∏s
j=2 qj = n− p1 ·

∏s
j=2 qj = p1 · (

∏r
i=2 pi−

∏s
j=2 qj). Hence

we have 1 ≤ n′ < n, and thus by induction n′ has a unique factorisation. Since
p1 6= qj for all j, hence in particular p1 - (q1 − p1), the left hand side implies
that the factorisation of n′ does not involve p1. But the right hand side says
that p1 is involved, a contradiction. Thus we have p1 = q1, and by cancelling
out p1 we are done by induction. ]

Since Z∗ = {±1}, a set of representatives of the associate classes of indecom-
posable elements is given by the set P ⊆ N of positive primes. Thus any
0 6= z ∈ Z can be written uniquely as z = sgn(z) ·

∏
p∈P p

νp(z), where the sign
sgn(z) ∈ {±1} is defined by sgn(z) · z > 0, and νp(z) ∈ N0. Thus in particular
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Table 1: Euclid-Mullin sequence.

r 1 +
∏r−1
i=1 pi pr

1 2
2 3 3
3 7 7
4 43 43
5 1807 13
6 23479 53
7 1244335 5
8 6221671 6221671
9 38709183810571 38709183810571

10 1498400911280533294827535471 139
11 208277726667994127981027430331 2801
12 583385912397051552474857832354331 11
13 6417245036367567077223436155897631 17
14 109093165618248640312798414650259711 5471
15 596848709097438311151320126551570873411 52662739

greatest common divisors and lowest common multiples always exist in Z; we
write gcd+(·) and lcm+(·), respectively, for the non-negative ones in question.

(4.2) Theorem: Euclid [∼ −300]. P is infinite.

Proof. Assume to the contrary that P = {p1, . . . , pr}, for some r ∈ N, and let
z := 1 +

∏r
i=1 pi ∈ Z. Then we have pi - z for all i ∈ {1, . . . , r}, and since z has

a factorisation we infer z = 1, a contradiction. ]

Inspired by this, for z ∈ Z \ {0,±1} letting pmin(z) ∈ P be the smallest positive
prime divisor of z, we consider the Euclid-Mullin sequence [Mullin, 1963]

recursively defined by p1 := 2 and pr := pmin

(
1 +

∏r−1
i=1 pi

)
∈ P, for r ≥ 2; see

Table 1. Hence the Euclid-Mullin sequence consists of pairwise distinct positive
primes, thus providing an algorithm to produce infinitely many of them. Noting
that typically 1 +

∏r−1
j=1 pi is not a prime, and that the positive primes do not

show up in the Euclid-Mullin in natural order, the question arises whether the
Euclid-Mullin sequence contains every positive prime, which is an open problem.

(4.3) Distribution of primes. We wonder how the positive primes are dis-
tributed amongst the positive integers. There are various aspects we could pos-
sibly consider. We show that in a certain sense there are ‘many’ primes, that
‘locally’ primes are not too evenly distributed, but that the ‘global’ distribution
is extremely smooth:
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a) For n ∈ N let the associated factorial be defined as n! := n·(n−1) · · · 2·1; we
let 0! := 1. Then for n ≥ 4 consider {n!−n, . . . , n!−3, n!−2}: Since i | (n!− i)
for all i ∈ {2, . . . , n}, and n < n!− n, this set does not contain any prime.

Hence we conclude that amongst the positive integers there are arbitrarily long
consecutive gaps without primes. But we also have the following result saying
that we indeed have to wait long enough to encouter large gaps:

Theorem: Bertrand’s Postulate [1845] [Tchebychef, 1852].
For any x ≥ 1 the left-open interval ]x, 2x] ⊆ R contains a prime. ]

b) The following theorem says that compared to all positive integers there are
many positive primes, actually many more than squares. To this end, we first
recall that the series

∑
n≥1

1
n diverges, while

∑
n≥1

1
n2 exists:

For the former we have the estimate
∑
n≥1

1
n = 1 +

∑
k≥1

(∑2k

n=2k−1+1
1
n

)
≥

1 +
∑
k≥1

(∑2k

n=2k−1+1
1
2k

)
= 1 +

∑
k≥1

2k−1

2k
= 1 +

∑
k≥1

1
2 , which diverges. For

the latter we have
∑
n≥1

1
n2 ≤ 1 +

∑
n≥2

1
n(n−1) = 1 +

∑
n≥2

(
1

n−1 −
1
n

)
≤ 2;

actually, we have the surprising result
∑
n≥1

1
n2 = π2

6 by Euler [1734]. ]

Theorem [Euler, 1737]. The series
∑
p∈P

1
p diverges.

Proof. Assume to the contrary that
∑
p∈P

1
p exists. From

∑
p∈P

(
1
p−1 −

1
p ) ≤∑

n≥2
(

1
n−1 −

1
n ) ≤ 1 we infer that

∑
p∈P

1
p−1 exists as well. Now, for n ∈ N let

P≤n := {p ∈ P; p ≤ n}, and for z ∈ Z \ {0,±1} let pmax(z) ∈ P be the largest
positive prime divisor of z; let additionally pmax(±1) := 0.

Letting N ∈ N we have
∑
n≤N

1
n ≤

∑
pmax(n)≤N

1
n =

∏
p∈P≤N

(∑
k≥0 p

−k) =∏
p∈P≤N

1
1−p−1 =

∏
p∈P≤N

p
p−1 =

∏
p∈P≤N

(
1 + 1

p−1
)
.

The natural logarithm ln: R>0 → R, fulfilling ∂
∂x ln(x) = 1

x and ∂2

∂x2 ln(x) =
− 1
x2 , is strictly increasing and concave, in particular we have ln(1 + x) ≤ x

for all x > −1. Using this we get ln
(∑

n≤N
1
n

)
≤ ln

(∏
p∈P≤N

(
1 + 1

p−1
))
≤∑

p∈P≤N
ln
(
1 + 1

p−1
)
≤
∑
p∈P≤N

1
p−1 ≤

∑
p∈P

1
p−1 , where by assumption the

right hand side exists. Thus limN→∞
(∑

n≤N
1
n

)
exists, a contradiction. ]

c) For x ∈ R>0 let P≤x := {p ∈ P; p ≤ x}, and let π(x) := |P≤x| be the prime
number function. We are interested in its asymptotic behaviour for x→∞.
The following deep theorem was conjectured by Gauss [1793] and Legendre
[1798], and first proven by Hadamard, De La Vallée Poussin [1896]:

Prime Number Theorem. We have limx→∞
(
π(x) · ln(x)x

)
= 1. ]

The values of π(n) and b n
ln(n)c, together with π(n) · ln(n)n , where n := 10k for
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Table 2: Prime number function.

log10(n) π(n) b n
ln(n)c π(n) · ln(n)n

1 4 4 0.921034
2 25 21 1.15129
3 168 144 1.1605
4 1229 1085 1.13195
5 9592 8685 1.10432
6 78498 72382 1.08449
7 664579 620420 1.07117
8 5761455 5428681 1.0613
9 50847534 48254942 1.05373

10 455052511 434294481 1.0478

k ∈ {1, . . . , 10}, are given in Table 2. Here, b·c : R→ Z : x 7→ max{z ∈ Z; z ≤ x}
denotes the (lower) Gauss bracket. The figures for π(n) have been computed
using the Sieve of Eratosthenes being described in (4.5).

(4.4) Theorem. Z is Euclidean with respect to δ : Z \ {0} → N0 : z 7→ |z|.

Proof. Since δ is monotonous, we only have to show that Z allows for quotient
and remainder with respect to δ. To do so, we even show that for all a, b ∈ Z
such that b 6= 0 there are unique q, r ∈ Z such that a = qb+ r and 0 ≤ r < |b|:
Let R := {a−xb ∈ N0;x ∈ Z, a ≥ xb}. Since a+ sgn(b) · |a| · b ∈ N0 we conclude
that R 6= ∅. Hence by the Principle of Induction there is a smallest element
r ∈ R, and we let q ∈ Z such that a − qb = r. Assume that r ≥ |b|, then we
have a− qb− sgn(b) · b = r − |b| ≥ 0, contradicting the minimality of r. Hence
we have a = qb+ r where 0 ≤ r < |b|.
To show uniqueness, let q′, r′ ∈ Z such that a = q′b + r′ and 0 ≤ r′ < |b|.
Then we have qb + r = a = q′b + r′, thus (q − q′)b = r′ − r. Hence we have
|q − q′| · |b| = |r′ − r| < |b|, which implies that q = q′, and thus r = r′ as well. ]

Using the above notation we denote the quotient by (a div b) := q ∈ Z, and
the remainder by (a mod b) := r ∈ {0, . . . , |b| − 1} =: Z|b|, so that we have
a = (a div b) · b+ (a mod b). Note that for b > 0, using the fraction a

b ∈ Q, we
have (a div b) = bab c.
Thus, since Euclidean domains are factorial, this yields another proof of the Fun-
damental Theorem of Arithmetic. Moreover, greatest common divisors always
in exit in Z, and they can be computed without factorisation, by the extended
Euclidean algorithm.
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Table 3: Extended Euclidean algorithm in Z.

i qi ri si ti

0 126 1 0
1 3 35 0 1
2 1 21 1 −3
3 1 14 −1 4
4 2 7 2 −7
5 0 −5 18

Example. Letting a := 2 · 32 · 7 = 126 and b := 5 · 7 = 35, Table 3 shows that
r := 7 = 2a− 7b ∈ gcd(a, b).

(4.5) Computing factorisations. Still we might want to compute factorisa-
tions. We turn to the question of how to do this. This is based on the following:

Proposition. Any decomposable n ∈ N has a divisor p ∈ P where p ≤ b
√
nc.

Proof. There are 2 ≤ a, b < n such that n = ab, where we may assume that
a ≤
√
n. Thus any p ∈ P such that p | a fulfills p ≤ a ≤

√
n and p | n. ]

a) Hence it is useful to determine the set P≤n of primes up to some prescribed
bound n ∈ N. This is done using the Sieve of Eratosthenes [∼ −200]:

• L ← [2, . . . , n]
• k ← 1
• while k ≤ b

√
nc do

• if k in L then # k prime
• j ← k2

• while j ≤ n do
• L ← L \ {j}
• j ← j + k

• k ← k + 1
• return L # contains P≤n

We may assume that n ≥ 2, and letting K := b
√
nc ∈ N we may even assume

that n = (K+1)2−1 ≥ 3. By induction on k we show that, after k ∈ {1, . . . ,K}
has been treated, for j ∈ {2, . . . , (k + 1)2 − 1} we have j ∈ L if and only if j
is a prime, and for j ∈ {(k + 1)2, . . . , n} we have j ∈ L if and only if all prime
divisors of j exceed k:

For k = 1 we have L = {2, 3}
.
∪ {4, . . . , n}, hence the assertion holds. Let k ≥ 2,

thus k < k2, and by induction we have k ∈ L if and only if k is a prime. If k is
not a prime, then L is unchanged, and for j ∈ {k2, . . . , n} we have j ∈ L if and
only if all prime divisors of j exceed k − 1, or equivalently k. If k is a prime,
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Table 4: Sieve of Eratosthenes.

2 3 42 5 62 7 82 93 102
11 122 13 142 153 162 17 182 19 202
213 222 23 242 255 262 273 282 29 302
31 322 333 342 355 362 37 382 393 402
41 422 43 442 453 462 47 482 497 502

then {k2, k2 + k, k2 + 2k, . . .} are deleted from L, and then for j ∈ {k2, . . . , n}
we have j ∈ L if and only if k - j and all prime divisors of j exceed k−1, which
is again equivalent to saying that all prime divisors of j exceed k. In particular,
for j ∈ {k2, . . . , (k + 1)2 − 1} we have j ∈ L if and only if j is a prime. ]

In practice, this is run only once for some fixed n, and the set P≤n is stored; a
typical choice is n := 108, where π(n) = 5761455. Note that to save space only
the differences between the successive elements of P≤n are stored; recall that
by Bertrand’s Postulate for neighbouring primes p < q ∈ P we have q − p < p.

Example. This is carried out for n := 50, hence k = 7, in Table 4: The primes
left over are given in bold face, and subscripts indicate at which stage an integer
is deleted. Hence we indeed find π(50) = 15, where

P≤50 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47}.

b) Given n ∈ N, let P≤√n = {p1, . . . , pr}, where r = π(
√
n) ∈ N0 and p1 <

· · · < pr. Then the factorisation of n is found by trial division as follows:

• L ← []
• for p ∈ [p1, . . . , pr] do
• while (n mod p) = 0 do
• L ← L t [p]
• n← n div p

• if n = 1 then
• return L # factorisation

• return [n] # n prime

By the Prime Number Theorem, the number of trials needed is given as π(
√
n) ∼√

n
ln(
√
n)
∼ exp

(
1
2 ln(n)− ln ln(n)

)
. Hence trial division is an exponential time

algorithm, in terms of the size ln(n) of the input n. Although there are better
integer factorisation algorithms, trial division is used in practice to treat small
n, or to discard small prime divisors of large n.
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5 Quadratic number rings

(5.1) Quadratic number fields. a) Let d ∈ Z \ {0, 1} be squarefree. Let√
d ∈ R>0 ⊆ C if d > 0, and

√
d := i ·

√
|d| ∈ C if d < 0, where i =

√
−1 ∈ C

is the imaginary unit. Let Q[
√
d] := {a + b

√
d ∈ C; a, b ∈ Q} ⊆ C be the d-th

quadratic number field, where for d > 0 and d < 0 the latter is called real
and imaginary, respectively. For d = −1 we get the Gaussian number field
Q[i] = {a + bi ∈ C; a, b ∈ Q}. Note that, if d′ = c2d for some 0 6= c ∈ Z, that
is d is the squarefree part of d′, then we have Q[

√
d′] = Q[

√
d]; for d ∈ {0, 1}

the analogous construction just yields Q[
√

0] = Q[
√

1] = Q.

From (a+ b
√
d)+(a′+ b′

√
d) = (a+a′)+(b+ b′)

√
d ∈ Q[

√
d] and c · (a+ b

√
d) =

ca+ cb
√
d ∈ Q[

√
d], for a, a′, b, b′, c ∈ Q, we conclude that Q[

√
d] is Q-subspace

of C. We show that the Q-generating set {1,
√
d} ⊆ Q[

√
d] actually is a Q-basis,

in particular we have dimQ(Q[
√
d]) = 2:

Proposition. For d ∈ Z \ {0, 1} squarefree, {1,
√
d} is Q-linearly independent.

Proof. Let a, b ∈ Q such that a− b
√
d = 0 ∈ C, and assume that [a, b] 6= [0, 0].

Then we have both a, b 6= 0. Multiplying both a and b with the product of their
denominators, we may assume that a, b ∈ Z. Hence we get

√
d = a

b ∈ Q, in
other words a2 = b2d ∈ Z. This is a contradiction for d < 0. Hence we may
assume that d > 0, in which case we consider factorisations: The multiplicities
νp(a

2) = 2 · νp(a) and νp(b
2) = 2 · νp(b) are even, while νp(d) ∈ {0, 1}, for

all p ∈ P, where there is some p ∈ P such that νp(d) = 1. Hence all the
multiplicities on the left hand side of a2 = b2d are even, while there is an odd
one on the right hand side, a contradiction. ]

From (a+b
√
d)(a′+b′

√
d) = (aa′+bb′d)+(ab′+a′b)

√
d ∈ Q[

√
d], for a, a′, b, b′ ∈

Q, we conclude that Q[
√
d] ⊆ C is a commutative ring, and since C is an integral

domain, Q[
√
d] is so as well. For 0 6= a + b

√
d ∈ Q[

√
d], that is [a, b] 6= [0, 0],

we have (a+ b
√
d)−1 = 1

a+b
√
d

= a−b
√
d

(a+b
√
d)(a−b

√
d)

= 1
a2−b2d · (a− b

√
d) ∈ C; note

that from a± b
√
d 6= 0 we conclude that a2 − b2d 6= 0 as well. This shows that

a+ b
√
d is a unit in Q[

√
d], implying that Q[

√
d] indeed is a field.

b) Let κ : Q[
√
d] → Q[

√
d] : a + b

√
d 7→ a − b

√
d be the Q-linear conjugation

map; for d < 0 this is just the restriction of complex conjugation to Q[
√
d].

Then for a, a′, b, b′ ∈ Q we have κ
(
(a + b

√
d)(a′ + b′

√
d)
)

= κ
(
(aa′ + bb′d) +

(ab′ + a′b)
√
d
)

= (aa′ + bb′d) − (ab′ + a′b)
√
d = (a − b

√
d) · (a′ − b′

√
d) =

κ(a+b
√
d)·κ(a′+b′

√
d), and we have κ(1) = 1. Thus κ is a ring isomorphism; for

0 6= z ∈ Q[
√
d] from κ(z)·κ(z−1) = κ(zz−1) = κ(1) = 1 we get κ(z)−1 = κ(z−1).

Now let N : Q[
√
d] → Q : a + b

√
d 7→ (a + b

√
d) · κ(a + b

√
d) = (a + b

√
d) ·

(a − b
√
d) = a2 − b2d be the norm map. Then we have N(1) = 1, and for

z, z′ ∈ Q[
√
d] we get N(zz′) = N(z)N(z′) ∈ Q, hence in particular N(κ(z)) =

κ(z) · κ2(z) = κ(z) · z = N(z).
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(5.2) Quadratic number rings. a) Let d ∈ Z \ {0, 1} be squarefree, and let
Z[
√
d] := {a + b

√
d ∈ C; a, b ∈ Z} ⊆ Q[

√
d]. Then by the above considera-

tios Z[
√
d] is a commutative ring, hence is an integral domain, being called a

quadratic number ring, where for d > 0 and d < 0 it is called real and imag-
inary, respectively; recall that {1,

√
d} is Q-linearly independent. For d = −1

we get the Gaussian integers Z[i] = {a+ bi ∈ C; a, b ∈ Z} [1807].

In particular, the conjugation map on Q[
√
d] restricts to a ring isomorphism

κ : Z[
√
d]→ Z[

√
d] : a+b

√
d 7→ a−b

√
d, and similarly the norm map Q[

√
d]→ Q

yields a map N : Z[
√
d]→ Z : z 7→ z · κ(z).

b) If 4 | (d− 1), then let Z[ 1+
√
d

2 ] := {a+ b 1+
√
d

2 ∈ C; a, b ∈ Z} = { 12 (2a+ b+

b
√
d) ∈ C; a, b ∈ Z} = { 12 (a + b

√
d) ∈ C; a, b ∈ Z, 2 | (a − b)} ⊆ Q[

√
d]; note

that {1, 1+
√
d

2 } is Q-linearly independent, and that Z[
√
d] ⊂ Z[ 1+

√
d

2 ]. We show

that Z[ 1+
√
d

2 ] is a commutative ring, also being called a quadratic number

ring; in particular, for d = −3 we get the Eisenstein integers Z[ 1+
√
−3

2 ] =

{ 12 (a+ b
√
−3) ∈ C; a, b ∈ Z, 2 | (a− b)}:

For a, a′, b, b′ ∈ Z such that 2 | (a − b) and 2 | (a′ − b′), we get 1
2 (a + b

√
d) ·

1
2 (a′ + b′

√
d) = 1

2

(
aa′+bb′d

2 + ab′+a′b
2 ·

√
d
)
. Writing d = 4k + 1 for some k ∈ Z,

in particular saying that d is odd, and noting that both {a, b} and {a′, b′} are
either both even or both odd, we conclude that both aa′ + bb′d and ab′ + a′b
are even, and that aa′ + bb′d − (ab′ + a′b) = 4kbb′ + aa′ + bb′ − ab′ − a′b =

4kbb′+(a−b)(a′−b′) is divisible by 4, implying that aa′+bb′d
2 ∈ Z and ab′+a′b

2 ∈ Z
such that 2 | (aa

′+bb′d
2 − ab′+a′b

2 ). ]

Hence we get the ring isomorphism κ : Z[ 1+
√
d

2 ] → Z[ 1+
√
d

2 ] : 1
2 (a + b

√
d) 7→

1
2 (a−b

√
d), where a, b ∈ Z such that 2 | (a−b); note that 2 | (a−b+2b) = (a+b).

Moreover, for a, b ∈ Z such that 2 | (a− b), writing a = α+ 2l and b = β+ 2m,
where either α = β = 1 or α = β = 0, and l,m ∈ Z, we get a2 − b2d =
α2 + 4l(α+ l)− (β2 + 4m(β+m))(1 + 4k) = α2−β2 + 4n = 4n, for some n ∈ Z.

Hence we indeed get a norm map N : Z[ 1+
√
d

2 ]→ Z : 1
2 (a+ b

√
d) 7→ 1

4 (a2− b2d).

(5.3) Units in quadratic number rings. We aim at describing the units in
quadratic number rings, which never are fields, and where it turns out that the
real and imaginary cases behave fundamentally differently.

Theorem. Let d ∈ Z \ {0, 1} be squarefree.

a) We have Z[
√
d]∗ = {z ∈ Z[

√
d]; |N(z)| = 1}.

If 4 | (d− 1) then similarly we have Z[ 1+
√
d

2 ]∗ = {z ∈ Z[ 1+
√
d

2 ]; |N(z)| = 1}.

b) For d < 0 we get the following: For d ≤ −2 we get Z[
√
d]∗ = {±1}, while for

d = −1 we have Z[i]∗ = {±1,±i}; note that Z[i]∗ = {1, i, i2, i3}.
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If 4 | (d − 1) then similarly for d ≤ −7 we get Z[ 1+
√
d

2 ]∗ = {±1}, while for

d ≤ −3 we have Z[ 1+
√
−3

2 ]∗ = {±1, ±1±
√
−3

2 }; note that letting ζ6 := 1+
√
−3

2 ∈ C
we have ζ26 = −1+

√
−3

2 and ζ36 = −1, hence Z[ζ6]∗ = {1, ζ6, ζ26 , . . . , ζ56}.

Proof. a) Since N : Z[
√
d] → Z is multiplicative such that N(1) = 1, we con-

clude that N restricts to a group homomorphism N : Z[
√
d]∗ → Z∗ = {±1},

implying Z[
√
d]∗ ⊆ {z ∈ Z[

√
d]; |N(z)| = 1}; conversely, if z ∈ Z[

√
d] such that

N(z) = z · κ(z) ∈ {±1}, then z−1 = N(z) · κ(z) ∈ Z[
√
d], hence z ∈ Z[

√
d]∗.

Similarly, if 4 | (d − 1) the group homomorphism N : Z[ 1+
√
d

2 ]∗ → Z∗ implies

Z[ 1+
√
d

2 ]∗ ⊆ {z ∈ Z[ 1+
√
d

2 ]; |N(z)| = 1}; conversely, if z ∈ Z[ 1+
√
d

2 ] such that

N(z) = z ·κ(z) ∈ {±1}, then z−1 = N(z) ·κ(z) ∈ Z[ 1+
√
d

2 ], hence z ∈ Z[ 1+
√
d

2 ]∗.

b) For d < 0 we get Z[
√
d]∗ = {a+ b

√
d ∈ Z[

√
d]; a2 + b2 · |d| = 1}, in particular

for d = −1 we have Z[i]∗ = {a+bi ∈ Z[i]; a2+b2 = 1}; this implies the assertion.

Similarly, if 4 | (d − 1) then we get Z[ 1+
√
d

2 ]∗ = { 12 (a + b
√
d) ∈ Z[ 1+

√
d

2 ]; a2 +

b2 · |d| = 4}, in particular for d = −3 we have Z[ 1+
√
−3

2 ]∗ = { 12 (a + b
√
−3) ∈

Z[ 1+
√
−3

2 ]; a2 + 3b2 = 4}; this implies the assertion. ]

Theorem. Let d ≥ 2 be squarefree. Then the (multiplicative) group of units
Z[
√
d]∗ = {a+ b

√
d ∈ Z[

√
d]; a2 − b2d ∈ {±1}} is infinite of shape {±1} × 〈εd〉.

If 4 | (d−1) then similarly Z[ 1+
√
d

2 ]∗ = { 12 (a+b
√
d) ∈ Z[ 1+

√
d

2 ]; a2−b2d ∈ {±4}}
is infinite of shape {±1}× 〈ε′d〉; here εd and ε′d are called fundamental units. ]

(5.4) Quadratic number rings as factorial domains. Let d ∈ Z \ {0, 1}
be squarefree, and to unify notation let Od := Z[

√
d] if 4 - (d − 1), and Od :=

Z[ 1+
√
d

2 ] if 4 | (d − 1); that is (for reasons we are not explaining here) in the
latter case we consider the larger of the quadratic number rings.

We wonder which Od are factorial, where again we distinguish the cases d < 0
and d > 0. For d < 0, the following deep theorem was conjectured by Gauss
[1798] and first proven by Stark [1967]:

Theorem. Let d < 0. Then Od is factorial if and only if

d ∈ {−1,−2}
.
∪ {−3,−7,−11}

.
∪ {−19,−43,−67,−163},

where the first bunch are the values such that 4 - (d− 1), while the latter two
bunches are the values such that 4 | (d− 1), and the first two bunches by (5.6)
are the values for which Od is Euclidean. ]

In contrast, for d > 0 it still is an open problem which rings Od are factorial,
where it is even unknown whether infinitely many of them are so. For d ≤ 30 the
ring Od is factorial if and only if d ∈ {2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29},
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of which by (5.6) only for d ∈ {14, 22, 23} the ring Od is not Euclidean with
respect to the norm map.

Example. i) We look for specific elements being indecomposable, but not a
prime [Dedekind, 1871]: To this end, let d ≤ −3 be odd, and we consider the
ring Z[

√
d], for which we have Z[

√
d]∗ = {±1}. From N(a+b

√
d) = a2+b2 ·|d| ≥

0, for a, b ∈ Z, we conclude N(a+ b
√
d) 6= 2.

We show that 2 ∈ Z[
√
d] is indecomposable, but not a prime: Assume that 2 =

xy, where x, y ∈ Z[
√
d] \ {±1}, hence we have N(x)N(y) = N(xy) = N(2) = 4,

and since N(x), N(y) > 1 we conclude N(x) = N(y) = 2, a contradiction.
Moreover, we have 2 | 1 + |d| = (1 +

√
d)(1 −

√
d) ∈ Z[

√
d], but a comparison

of coefficients shows 2 - (1±
√
d).

Hence we conclude that Z[
√
d] is not factorial. This proves the above theorem

for 4 | (d + 1). As there are d ≤ −3 such that 4 | (d − 1) and Od is factorial,
we observe that Z[

√
d] and Od indeed might be essentially different.

ii) Let d ≤ −5 be odd such that 4 | (d+ 1). We show that d− 1 and 2 + 2
√
d

do not have a greatest common divisor in Z[
√
d]:

Assume z = a + b
√
d ∈ Z[

√
d], where a, b ∈ Z, is a greatest common divisor.

Then taking norms we get N(z) | (d − 1)2 and N(z) | 4(d − 1), hence N(z) |
(d−1) ·gcd+(4, d−1). Moreover, 2 | z ∈ Z[

√
d] yields 4 | N(z), and (1+

√
d) |

z ∈ Z[
√
d] yields (d − 1) | N(z), thus 4(d−1)

gcd+(4,d−1) | N(z). Hence we conclude

that 4
gcd+(4,d−1) · (d− 1) | N(z) | (d− 1) · gcd+(4, d− 1). Since 4 | (d+ 1) we

have gcd+(4, d− 1) = 2, and thus a2 + b2 · |d| = N(z) = 2(1− d). Hence we get
b ∈ {0,±1}. If b = 0, then a comparison of coefficients yields z = a ∈ {±1,±2},
hence N(z) ∈ {1, 4}, a contradiction. If |b| = 1, then we get a2 = 2 − d, hence
a is odd, thus 4 | (a+ 1)(a− 1) = a2 − 1 = d− 1, a contradiction. ]

iii) For −12 ≤ d < −2 even, there are just two cases to be considered:

For d := −6 we get 2 · 3 = (
√
−6) · (−

√
−6) ∈ Z[

√
−6]. From N(a + b

√
−6) =

a2 + 6b2 ≥ 0, for a, b ∈ Z, we infer that N(z) 6∈ {2, 3} for all z ∈ Z[
√
−6]. Hence

N(2) = 4 and N(3) = 9 and N(±
√
−6) = 6 imply that these elements are all

indecomposable, while the above product says that none of them is a prime.
Hence Z[

√
−6] is not factorial.

For d := −10 we get 2 · 5 = (
√
−10) · (−

√
−10) ∈ Z[

√
−10]. From N(a +

b
√
−10) = a2 + 10b2 ≥ 0, for a, b ∈ Z, we infer that N(z) 6∈ {2, 5} for all

z ∈ Z[
√
−10]. Hence N(2) = 4 and N(5) = 25 and N(±

√
−10) = 10 imply that

these elements are all indecomposable, while the above product says that none
of them is a prime. Hence Z[

√
−10] is not factorial.

(5.5) Quadratic number rings as principal ideal domains. This is im-
mediately settled; recall that principal ideal domains are factorial anyway:
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Theorem. Let d ∈ Z \ {0, 1} be squarefree. Then the ring Od is a principal
ideal domain if and only if it is factorial. ]

Example. We consider the ring R := Z[
√
−5], which is not factorial, and

hence possesses non-principal ideals. Indeed these are related to non-unique
factorisations, which can be unified using ideals of R:

We have R∗ = {±1} and N(a + b
√
−5) = a2 + 5b2; in particular we have

N(a + b
√
−5) 6∈ {2, 3}. Thus N(2) = 4 and N(3) = 9 and N(1 ±

√
−5) = 6

show that the elements 2, 3, 1 ±
√
−5 ∈ R are indecomposable. Hence 2 · 3 =

6 = (1 +
√
−5)(1−

√
−5) are two essentially different factorisations.

Let I2 := 〈2, 1 +
√
−5〉 and I±3 := 〈3, 1 ±

√
−5〉. Then we have I22 = 〈4, 2 +

2
√
−5,−4 + 2

√
−5〉 = 〈2〉 and I+3 I

−
3 = 〈9, 3 + 3

√
−5, 3 − 3

√
−5, 6〉 = 〈3〉, as

well as I2I
+
3 := 〈6, 2 + 2

√
−5, 3 + 3

√
−5,−4 + 2

√
−5〉 = 〈1 +

√
−5〉 and I2I

−
3 :=

〈6, 2 − 2
√
−5, 3 + 3

√
−5, 6〉 = 〈1 −

√
−5〉. Thus we get I22 · I+3 I

−
3 = 〈2〉〈3〉 =

〈6〉 = 〈1 +
√
−5〉〈1−

√
−5〉 = I2I

+
3 · I2I

−
3 , showing that both factorisations lead

to the same product of ideals.

We determine |R/I2| and |R/I±3 |: For a + b
√
−5 ∈ R we have a + b

√
−5 ≡

a− b ≡ ((a− b) mod 2) (mod I2), implying that |R/I2| ≤ 2; since I22 = 〈2〉 6= R
implies I2 6= R as well, we deduce |R/I2| = 2. Similarly, we have a + b

√
−5 ≡

a ∓ b ≡ ((a ∓ b) mod 3) (mod I±3 ), implying that |R/I±3 | ≤ 3; since I+3 I
−
3 =

〈3〉 6= I±3 we have I±3 6= R; assuming that 1 ≡ −1 (mod I±3 ) yields 2 ∈ I±3 ,
hence 1 = 3− 2 ∈ I±3 , a contradiction; we deduce |R/I±3 | = 3.

We show I2 and I±3 are non-principal ideals: Assume that I2 = 〈z〉 for some
z ∈ R; then z | 2 and z | 1+

√
−5, entailingN(z) | N(2) = 4 andN(z) | N(1+√

−5) = 6, hence N(z) | 2, and thus N(z) = 1, that is z ∈ {±1}, and hence
I2 = R, a contradiction. Similarly, assume that I±3 = 〈z〉 for some z ∈ R; then
z | 3 and z | 1±

√
−5, entailing N(z) | N(3) = 9 and N(z) | N(1±

√
−5) = 6,

hence N(z) | 3, that is z ∈ {±1}, and hence I±3 = R, a contradiction.

Since the elements 2, 3, 1 ±
√
−5 ∈ R are indecomposable and non-associate,

we infer these elements are pairwise coprime, that is we may let d2 := 1 ∈
gcd(2, 1 +

√
−5) and d±3 := 1 ∈ gcd(3, 1 ±

√
−5). But we have I2 ⊂ 〈d2〉 = R

and I±3 ⊂ 〈d
±
3 〉 = R, saying that the greatest common divisors in question

cannot be written as a sum of multiples of the elements under consideration. ]

(5.6) Quadratic number rings as Euclidean domains. Let d ∈ Z \ {0, 1}
be squarefree. We wonder which Od are Euclidean. This is rarely the case:

Theorem. The ring Od is Euclidean with respect to the norm map, that is has
degree map δ : Od \ {0} → N0 : z 7→ |N(z)|, if (but not only if)

d ∈ {−1,−2}
.
∪ {−3,−7,−11}

.
∪ {2, 3}

.
∪ {5, 13},

where we distinguish the cases 4 - (d− 1) and 4 | (d− 1), as well as d < 0 and
d > 0. In particular, the Gaussian and the Eisenstein integers are Euclidean.
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Proof. Note first that the multiplicativity of the norm map N : Od → Z implies
monotonicity. Hence we only have to show that this allows for quotient and
remainder. To do so, we distinguish the cases 4 - (d− 1) and 4 | (d− 1).

i) If d ∈ {−2,−1, 2, 3}, then Od = Z[
√
d]. Let u, v ∈ Z[

√
d] such that v 6= 0.

Then let uv−1 = s+ t
√
d ∈ Q[

√
d] for some s, t ∈ Q, and let x, y ∈ Z such that

|s− x| ≤ 1
2 and |t− y| ≤ 1

2 . Let q := x+ y
√
d ∈ Z[

√
d] and r := u− qv ∈ Z[

√
d].

Then we have r = v · (uv−1 − q) = v ·
(
(s− x) + (t− y)

√
d
)
. Since |(s− x)2 −

d(t−y)2| ≤ 1
4 +2 · 14 < 1 for |d| ≤ 2, and − 3

4 ≤ (s−x)2−3(t−y)2 ≤ 1
4 for d = 3,

we get |N(r)| = |N(v)| · |N(uv−1− q)| = |N(v)| · |(s− x)2− d(t− y)2| < |N(v)|.

ii) If d ∈ {−11,−7,−3, 5, 13}, then Od = Z[ 1+
√
d

2 ]. Let u, v ∈ Z[ 1+
√
d

2 ] such

that v 6= 0. Let again uv−1 = s+ t
√
d ∈ Q[

√
d] for some s, t ∈ Q, let y ∈ Z such

that |2t−y| ≤ 1
2 , then let x ∈ Z such that |s−x− y

2 | ≤
1
2 . Let q := x+y 1+

√
d

2 ∈
Z[ 1+

√
d

2 ] and r := u−qv ∈ Z[ 1+
√
d

2 ]. Since |(s−x− y
2 )2−d(t− y

2 )2| ≤ 1
4+11· 116 < 1

for |d| ≤ 11, and − 13
16 ≤ (s − x − y

2 )2 − 13(t − y
2 )2 ≤ 1

4 for d = 13, we get
|N(r)| = |N(v)| · |N(uv−1 − q)| = |N(v)| · |(s− x− y

2 )2 − d(t− y
2 )2| < |N(v)|. ]

Theorem. a) For d ≤ −13 the ring Od is not Euclidean. Hence for d < 0 the
ring Od is Euclidean if and only if it is Euclidean with respect to the norm map.

b) For d > 0 the ring Od is Euclidean with respect to the norm map if and only
if d ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73}. ]

In part a), it is not too difficult to see that for d ≤ −13 the ring Od is not
Euclidean with respect to any degree map. (But still we do not prove this
here.) Since for d ∈ {−5,−6,−10} we have already seen in (5.4) that the ring
Od = Z[

√
d] is not factorial, let alone Euclidean, the second assertion follows.

In part b), generalising the method used to prove the preceeding theorem, it
is not too difficult to see that for d ∈ {2, 3, 5, 6, 7, 13, 17, 21, 29} the ring Od is
Euclidean with respect to the norm map. (But still we do not prove this here.)
The full assertion, buildung on quite a few predecessors, was finally proved by
Inkeri [1949] and Chatland–Davenport [1950]. But it still is an open
problem whether there is a real quadratic number ring which is Euclidean, but
not Euclidean with respect to the norm map; actually, the factorial domain O14

is considered to be a possible candidate.

6 Applications

We present a few applications of quadratic number rings. The first one comes
quite unexpected, in preparation of which we determine a group of units first:

(6.1) Example. Let d := 2 and ε := 1 +
√

2 ∈ Z[
√

2]. Then we have Z[
√

2]∗ =
{±εk ∈ Z[

√
2]; k ∈ Z}, where the elements given are pairwise different.
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Proof. We have N(ε) = −1, thus ±εk ∈ Z[
√

2]∗ for all k ∈ Z. Conversely, if
z = a+ b

√
2 ∈ Z[

√
2]∗, by going over to ±z or ±z−1 = ±N(z) ·κ(z) if necessary

we may assume that a, b ≥ 0. We are going to show that z = εk for some k ∈ N0.
To this end, we use induction on a+ b ∈ N, where we have a+ b = 1 if and only
if b = 0, in which case a = 1 and thus z = 1 = ε0. Hence let now a+ b ≥ 2:

We next show that b ≤ a ≤ 2b: Assuming to the contrary that 0 ≤ a < b, we
get 2b2 ± 1 = a2 < b2, hence b2 < ∓1, thus b = 0, a contradiction; assuming
to the contrary that a > 2b > 0, we get 2b2 ± 1 = a2 > 4b2, hence 2b2 < ±1,
thus b = 0, a contradiction. Now we have ε−1 = −κ(ε) = −1 +

√
2, thus

zε−1 = (a+ b
√

2)(−1 +
√

2) = (2b− a) + (a− b)
√

2, where both 2b− a ≥ 0 and
a − b ≥ 0. Since (2b − a) + (a − b) = b < a + b, by induction there is k ∈ N0

such that zε−1 = εk, hence z = εk+1.

It remains to be shown that the elements ±εk ∈ Z[
√

2]∗ are pairwise different,
for all k ∈ Z: Since ε−k = (ε−1)k = (−κ(ε))k = (−1)kκ(εk), and εk ∈ Z if and
only if k = 0, it again suffices to consider the elements εk ∈ Z[

√
2]∗ for k ∈ N0.

But now letting εk = a+ b
√

2 for a, b ∈ Z, we get εk+1 = (a+ b
√

2)(1 +
√

2) =
(a + 2b) + (a + b)

√
2, which by induction on k ∈ N0 implies that a, b ≥ 0, and

that a+ b is strictly increasing with k. ]

The above considerations yield recursion formulae to compute the coefficients
ak, bk ∈ N0 of εk = ak + bk

√
2 ∈ Z[

√
2], namely ak+1 := ak + 2bk and bk+1 :=

ak + bk for k ∈ N0, where a0 = 1 and b0 = 0. Hence both sequences [a0, a1, . . .]
and [b0, b1, . . .] are strictly increasing, where ak is odd, while b2k is even and
b2k+1 is odd, for k ∈ N0. A few explicit values are given in Table 5.

We are now prepared for our application, keeping the notation used:

(6.2) Example. Amongst the sums sn :=
∑n
i=1 i = 1 + 2 + · · ·+ n ∈ N, where

n ∈ N, there are infinitely many squares.

Proof. We are actually able to describe the squares occurring precisely, which
in particular shows that there are infinitely of them; a few values are given in

Table 5. To this end, let n ∈ N such that n(n+1)
2 = sn = s2, for some s ∈ N, or

equivalently n(n+ 1) = 2s2; note that gcd+(n, n+ 1) = 1.

i) Let n be odd. Then we have n = m2 for some odd m ∈ N such that m | s, and

we let l ∈ N such that ml = s. From n(n+ 1) = 2s2 we get n− 2s2

n = −1, which

yields m2−2l2 = −1. Hence there is k ∈ N odd such that εk = m+l
√

2 ∈ Z[
√

2].
Conversely, given εk = m+ l

√
2 ∈ Z[

√
2] for some k ∈ N odd, we obtain n := m2

and s := ml fulfilling −1 = m2 − 2l2 = n− 2s2

n , hence n(n+ 1) = 2s2.

ii) Let n be even. Then let n′ := n + 1. Hence n′ being odd we have n′ = m2

for some odd m ∈ N such that m | s, and we let l ∈ N such that ml = s.

From (n′ − 1)n′ = 2s2 we get n′ − 2s2

n′ = 1, which yields m2 − 2l2 = 1. Hence

there is k ∈ N even such that εk = m + l
√

2 ∈ Z[
√

2]. Conversely, given
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Table 5: Units εk = ak + bk
√

2 ∈ Z[
√

2].

k ak bk n s =
√
sn

0 1 0 0 0
1 1 1 1 1
2 3 2 8 6
3 7 5 49 35
4 17 12 288 204
5 41 29 1681 1189
6 99 70 9800 6930
7 239 169 57121 40391
8 577 408 332928 235416
9 1393 985 1940449 1372105

10 3363 2378 11309768 7997214
11 8119 5741 65918161 46611179
12 19601 13860 384199200 271669860
13 47321 33461 2239277041 1583407981
14 114243 80782 13051463048 9228778026
15 275807 195025 76069501249 53789260175

εk = m+ l
√

2 ∈ Z[
√

2] for some k ∈ N even, we obtain n := m2− 1 and s := ml

fulfilling 1 = m2 − 2l2 = (n+ 1)− 2s2

n+1 , hence n(n+ 1) = 2s2. ]

Next we consider a couple of diophantine equations, whose solutions are found
using the Euclidean domains Z[i] and Z[

√
−2], respectively:

(6.3) Example: Diophantine equations. a) The equation X3 = Y 2 +1 has
only the integer solutions x = 1 and y = 0. In other words, n = 0 is the only
square integer such that n+ 1 is a cube.

b) The equation X3 = Y 2+2 has only the integer solutions x = 3 and y ∈ {±5}.
(This fact was reportedly already known to Fermat.) In other words, n = 26
is the only integer such that n− 1 is a square and n+ 1 is a cube.

Proof. a) Let [x, y] ∈ Z2 be a solution. We go over to the ring Z[i], which is
Euclidean, hence factorial. We have x3 = y2 + 1 = (y − i)(y + i) ∈ Z[i].

Let γ ∈ gcd(y − i, y + i), then γ |
(
(y + i) − (y − i)

)
= 2i = (1 + i)2 ∈ Z[i].

Hence we have γ ∼ 1 or γ ∼ (1 + i) or γ ∼ (1 + i)2; note that N(1 + i) = 2 ∈ Z
indecomposable implies that (1 + i) ∈ Z[i] is indecomposable. Moreover, since
1 − i = −i(1 + i) ∼ 1 + i, using the conjugation map we infer ν1+i(y + i) =
ν1−i(y− i) = ν1+i(y− i), hence 3 | ν1+i(x3) = 2ν1+i(y+ i), thus 3 | ν1+i(y+ i).

Let π ∈ Z[i] be indecomposable such that π 6∼ (1 + i). Then π - γ ∈ Z[i], hence
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π divides at most one of 1±i, thus 3 | νπ(x3) = νπ(y+i). Since Z[i]∗ = {±1,±i}
consists of cubes, we infer that y + i ∈ Z[i] is a cube. There are a, b ∈ Z such
that y+i = (a+bi)3 = a(a2−3b2)+b(3a2−b2)i ∈ Z[i], implying b(3a2−b2) = 1,
hence b = −1 and a = 0, and thus y = a(a2 − 3b2) = 0.

b) Let [x, y] ∈ Z2 be a solution. Assume that y is even, then y2 + 2 is even,
but not divisible by 4; hence x is even, thus x3 is divisible by 8, a contradiction.
Hence y is odd. Now we go over to the ring Z[

√
−2], which is Euclidean, hence

factorial. We have x3 = y2 + 2 = (y −
√
−2)(y +

√
−2) ∈ Z[

√
−2]. We next

show that y −
√
−2 and y +

√
−2 are coprime in Z[

√
−2]:

Let c+ d
√
−2 ∈ gcd(y−

√
−2, y+

√
−2), then (c+ d

√
−2) |

(
(y+

√
−2) + (y−√

−2)
)

= 2y ∈ Z[
√
−2] and (c+ d

√
−2) |

(
(y +

√
−2)− (y −

√
−2)

)
= 2
√
−2 ∈

Z[
√
−2]. Taking norms yields c2 +2d2 | 4y2 ∈ Z and c2 +2d2 | 8 ∈ Z, implying

c2+2d2 | gcd+(4y2, 8) = 4 ∈ Z. Hence [c, d] ∈ {[0,±1], [±1, 0], [±2, 0]}. Assume
that

√
−2 | (y−

√
−2) ∈ Z[

√
−2], then

√
−2 | y ∈ Z[

√
−2], hence 2 | y2 ∈ Z, a

contradiction; assume that 2 | (y −
√
−2) ∈ Z[

√
−2], then

√
−2 | (y −

√
−2) ∈

Z[
√
−2], which is known to be a contradiction. Hence we have c+d

√
−2 ∈ {±1}.

Since Z[
√
−2]∗ = {±1} consists of cubes, we infer that both y±

√
−2 ∈ Z[

√
−2]

are cubes, thus there is a+ b
√
−2 ∈ Z[

√
−2] such that (a+ b

√
−2)3 = y+

√
−2,

where the left hand side equals (a+ b
√
−2)3 = a(a2 − 6b2) + b(3a2 − 2b2)

√
−2.

This yields a(a2−6b2) = y and b(3a2−2b2) = 1. Hence we infer |b| = 1. Assume
that b = −1, then 3a2 = 1, a contradiction. Thus we have b = 1, hence 3a2 = 3,
entailing a ∈ {±1}. Hence we have y = a(a2 − 6b2) ∈ {∓5}, and x = 3. ]

(6.4) Example: Gaussian primes. We proceed to determine the primes in
Z[i]. Recall that Z[i] is Euclidean, hence is a principal ideal domain, and thus
is factorial. Conjugation is given as κ : Z[i] → Z[i] : a + bi 7→ a − bi, and the
norm map is N : Z[i] → Z : a + bi 7→ (a + bi)(a − bi) = a2 + b2. Moreover, we
have Z[i]∗ = {z ∈ Z[i];N(z) = 1} = {±1,±i}.

Lemma. Let π ∈ Z[i] be a prime. Then there is a unique p ∈ P ⊆ Z such that
π | p ∈ Z[i], and we have N(π) ∈ {p, p2}.

Proof. We have N(π) ∈ Z such that N(π) > 1. Hence considering the factori-
sation of N(π) ∈ Z, from N(π) = π · κ(π) and π ∈ Z[i] being a prime we infer
that π | p ∈ Z[i] for some prime p ∈ P such that p | N(π) ∈ Z. Moreover,
from π | p we get N(π) | N(p) = p2, hence N(π) ∈ {p, p2}, which also shows
that the prime p ∈ P such that π | p ∈ Z[i] is uniquely determined. ]

The primes π ∈ Z[i] can be grouped according to the prime p ∈ P they divide:

Theorem. Let π ∈ Z[i] be a prime, and let p ∈ P such that π | p ∈ Z[i].

a) If p = 2, then we have 2 ∼ (1 + i)2, in other words π ∈ {±1 ± i} are the
prime divisors of 2 in Z[i]; the prime 2 is called ramified in Z[i].
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b) If 4 | p+ 1, then we have π ∼ p, in other words π ∈ {±p,±ip} are the prime
divisors of p in Z[i]; the prime p is called inert in Z[i].

c) If 4 | p − 1, then we have p = π · κ(π), where π 6∼ κ(π), in other words
{±π,±iπ,±κ(π),±iκ(π)} are the prime divisors of p in Z[i]; the prime p is
called split in Z[i].

Proof. a) Let p = 2. From N(1 + i) = 2 we infer that 1 + i ∈ Z[i] is a prime,
and hence we have the factorisation (1 + i)2 ∼ (1 + i)(1 − i) = 2 ∈ Z[i]. This
implies π ∼ 1 + i.

b) Let 4 | p + 1. Assume that N(π) = p, then writing π = a + ib, for some
a, b ∈ Z, yields a2 + b2 = p. We have a = a′ + 4k and b = b′ + 4l, for some
a′, b′ ∈ {0, . . . , 3} and k, l ∈ Z. From this we get a2 + b2 = c + 4m, for some
c ∈ {0, 1, 2} and m ∈ Z, thus 4 - a2 + b2 + 1, a contradiction. Hence we have
N(π) = p2 = N(p), entailing π ∼ p.
c) Let 4 | p − 1. Then by (10.6), as a consequence of Artin’s Theorem, the
quadratic congruence X2 + 1 ≡ 0 (mod p) is solvable, hence let x ∈ Zp such
that p | x2 + 1. We consider the ideal I := 〈p, x + i〉 E Z[i]. Since Z[i] is a
principal ideal domain, we have I = 〈π〉 where π ∈ gcd(p, x+ i) ⊆ Z[i].

For any z ∈ I there are α, β ∈ Z[i] such that z = pα+ (x+ i)β, hence we have
N(z) = N

(
pα+ (x+ i)β

)
=
(
pα+ (x+ i)β

)
·
(
pκ(α) + (x− i)κ(β)

)
= pN(α) +

(x2 + 1)N(β) + p(x − i)ακ(β) + p(x + i)κ(α)β, showing that p | N(z) ∈ Z[i].
In particular, π ∈ Z[i] is not a unit, that is N(π) > 1.

Since π | p and π | x + i we have N(π) | N(p) = p2 and N(π) | N(x + i) =
(x + i)(x − i) = x2 + 1. Since x2 + 1 ≤ (p − 1)2 + 1 = p2 − 2(p − 1) < p2, we
have N(π) < p2, hence we conclude that N(π) = p.

Thus in particular π ∈ Z[i] is a prime. Assume that π ∼ κ(π), then π ∼ κ(π) |
κ(x+ i) = x− i, hence π |

(
(x+ i)− (x− i)

)
= 2i, implying N(π) | N(2i) = 4,

a contradiction. Thus we have π 6∼ κ(π). Hence from κ(π) | κ(p) = p we get
π · κ(π) | p. Since N(π · κ(π)) = p2 = N(p), we conclude that π · κ(π) ∼ p. ]

In the last case, if 4 | p − 1, writing π = a + bi ∈ Z[i] for some a, b ∈ Z, from
N(π) = a2 + b2 = p we get a, b 6= 0 and a 6= b, and the prime divisors of p are
given as {±π,±iπ,±κ(π),±iκ(π)} = {±a± ib,±b± ia}.
Moreover, π is found as follows: We first determine x ∈ Zp such that p | x2 +1,
subsequently we compute π ∈ gcd(p, x+i) ⊆ Z[i] using the Euclidean algorithm;
actually, by Wilson’s Theorem, see (10.5), we have x =

(
(±(p−12 )!) mod p

)
.

Corollary. A prime p ∈ P is a sum of two squares in Z if and only if p = 2
or 4 | p − 1. In this case, there is a unique representation p = a2 + b2, where
a, b ∈ N such that a ≤ b. ]

This yields the following application to a question of integer arithmetic:
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(6.5) Theorem: Euler’s two-squares theorem [1754].

Let n = 2c ·
∏r
i=1 p

ai
i ·
∏s
j=1 q

bj
j ∈ N, where pi, qj ∈ P are pairwise distinct odd

primes, such that 4 | pi − 1 and 4 | qj + 1, and where c ∈ N0 and ai, bj ∈ N,
for some r, s ∈ N0.

a) Then n is a sum of two squares in Z if and only if b1, . . . , bs are all even.

b) There is a primitive representation n = a2 + b2, that is a, b ∈ Z such that
gcd+(a, b) = 1, if and only if c ∈ {0, 1} and s = 0. In this case, if r ≥ 1 there
are precisely 2r−1 primitive representations such that a, b ∈ N such that a ≤ b;
if r = 0 then 1 = 02 + 12 and 2 = 12 + 12 have a unique such representation.

Proof. a) If n = a2 + b2 = N(a+ bi) = (a+ bi) · κ(a+ bi), where a, b ∈ Z, then

we have the factorisation a+ bi ∼ (1+ i)c ·
∏r
i=1

(
παi
i ·κ(πi)

α′i
)
·
∏s
j=1 q

bj
2
j ∈ Z[i],

where pi ∼ πi · κ(πi) ∈ Z[i], and αi, α
′
i ∈ N0 such that αi + α′i = ai, for all

i ∈ {1, . . . , r}. Hence bj is even, for all j ∈ {1, . . . , s}. Conversely, if the latter
condition holds, then any element of Z[i] having a factorisation as above gives
rise to a decomposition of n as a sum of two squares in Z.

b) If n has a primitive representation, then from 2(c div 2) ·
∏s
j=1 q

bj
2
j | gcd+(a, b)

we get c ≤ 1 and s = 0. Hence let a+ bi ∼ (1 + i)c ·
∏r
i=1

(
παi
i · κ(πi)

α′i
)
, where

c ≤ 1; we may assume that r ≥ 1. Then we have gcd+(a, b) > 1 if and only
if there is p ∈ P such that p | a + bi ∈ Z[i]. From the given factorisation of
a+ bi we infer that this is equivalent to having πi · κ(πi) ∼ pi | a+ bi for some
i ∈ {1, . . . , r}, which in turn amounts to say that both αi, α

′
i > 0. Hence the

primitive representations are precisely given by chosing {αi, α′i} = {ai, 0} for all
i ∈ {1, . . . , r}. Thus there are 2r choices, which by interchanging all of the αi
and α′i consist of 2r−1 pairs of mutually conjugate ones. ]

Example. For p := 5 we get x := 2, hence N(x + i) = 5 = p shows that
π ∼ 2+i ∈ Z[i]; thus we get 5 = 12+22. For p := 13 we get x := 5, then quotient
and remainder yields p = (3−i)(x+i)−(3−2i), hence N(3+2i) = 13 = p shows
that π ∼ 3 + 2i ∈ Z[i]; thus we get 13 = 22 + 32. Thus for n := 65 = 5 ·13, up to
conjugation we get a+bi ∼ (2+i)(3+2i) = 4+7i and a+bi ∼ (2+i)(3−2i) = 8−i,
which hence yield 65 = 42 + 72 = 12 + 82.

(6.6) Sums of squares. By Euler’s Theorem there are infinitely many positive
integers which are a sum of two squares in Z. But since there are infinitely many
primes kongruent to 3 modulo 4, see (13.1), there also infinitely many positive
integers which cannot be written as a sum of two squares in Z.

Hence, firstly we may ask, how ‘dense’ the set of positive integers which are a
sum of two squares in Z is as a subset of all positive integers: Letting σ2(x) :=
|{n ∈ N;n ≤ x, n = a2 + b2 for some a, b ∈ Z}|, for x ∈ R>0, due to Landau

[1909] we have limx→∞
(
σ2(x)·

√
ln(x)

x

)
= c > 0, hence limx→∞

σ2(x)
x = 0. (This

we do not prove here.)
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Secondly, we wonder whether allowing for more summands changes the picture,
and we may ask whether there is a fixed number s ∈ N such that any positive
integer can be written as a sum of s squares in Z. Since 7 = 12 + 12 + 12 + 22

is the only way of writing 7 non-trivially as a sum of squares in Z, we conclude
that s ≥ 4, if it exists at all. Indeed s exists, and we have s = 4 by the following
theorem (which is not proven here either):

Theorem: Lagrange’s four-squares theorem [1770].
Any positive integer can be written as a sum of four squares in Z. ]

III Congruences

7 Residue classes

(7.1) Residue class rings. a) Let n ∈ N. We consider the relation Mn :=
{[a, b] ∈ Z2; (a mod n) = (b mod n) ∈ Zn}, where Zn := {0, . . . , n − 1}; in this
case we write a ≡ b (mod n). In other words, for a, b ∈ Z we have a ≡ b
(mod n), if and only if a and b have the same remainder upon division by n.

ThenMn is an equivalence relation on Z, that isMn is reflexive, symmetric and
transitive. The associated equivalence classes a = [a]n = {b ∈ Z; (a mod n) =
(b mod n)} ⊆ Z, for a ∈ Z, are called residue classes modulo n.

Lemma. For a ∈ Z we have a = {a+ kn ∈ Z; k ∈ Z} = {b ∈ Z;n | (a− b)}.

Proof. Let b ∈ a, then there are c ∈ Zn and r, s ∈ Z such that a = c+ rn and
b = c+sn, hence b = a+(s−r)n; this shows a ⊆ {a+kn ∈ Z; k ∈ Z}. Let k ∈ Z,
then n | kn =

(
(a+ kn)− a

)
shows {a+ kn ∈ Z; k ∈ Z} ⊆ {b ∈ Z;n | (a− b)}.

Let finally b ∈ Z such that n | (a− b), and let c, d ∈ Zn and r, s ∈ Z such that
a = c + rn and b = d + sn, then n |

(
(a − b) + (r − s)n

)
= c − d. Hence from

|c− d| < n we conclude c = d, showing that {b ∈ Z;n | (a− b)} ⊆ a. ]

b) Hence we also write a = a + nZ := {a + kn ∈ Z; k ∈ Z} ⊆ Z. Now let
Z/nZ := {a + nZ ⊆ Z; a ∈ Z} be the set of residue classes. This gives rise to
the natural map νn : Z→ Z/nZ : a 7→ a+ nZ; note that νn is surjective.

Then quotient and remainder shows that Z/nZ = {a + nZ ⊆ Z; a ∈ Zn} =
{0, . . . , n− 1}. Moreover, since (a mod n) = a for a ∈ Zn, we conclude that the
latter residue classes are pairwise different. Thus Zn is a set of representatives
of the residue classes modulo n, that is the natural map induces a bijection
Zn → Z/nZ, and hence we have the disjoint union Z =

∐
a∈Zn

(a+ nZ).

For example, for n = 2 the equivalence classes are 0 + 2Z = {0, 2,−2, 4,−4, . . .}
and 1 + 2Z = {1,−1, 3,−3, . . .}, that is the even and odd integers, respectively.
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Proposition. Let n ∈ N.

a) The set Z/nZ = {0, . . . , n− 1} is a commutative ring, being called the as-
sociated residue class ring, with addition a + b := a+ b and multiplication
a · b := ab, for a, b ∈ Z, with additive neutral element 0, the additive inverse of
a being −a, and multiplicative neutral element 1.

Moreover, the natural map νn : Z → Z/nZ : a 7→ a is a surjective ring homo-
morphism such that ker(νn) = nZE Z.

b) The set Zn = {0, . . . , n − 1} is a commutative ring, with addition a + b :=(
(a + b) mod n

)
and multiplication a · b :=

(
(ab) mod n

)
, for a, b ∈ Zn, with

additive neutral element 0, the additive inverse of a being
(
(−a) mod n

)
and

multiplicative neutral element 1.

Moreover, the map νn|Zn
: Zn → Z/nZ : a 7→ a is a ring isomorphism.

Proof. a) Noting that nZEZ is an ideal, the assertion follows from the homo-
morphism theorem, but we prefer to give an explicit proof. To this end, we only
have to show that addition and multiplication are independent of the choice of
representatives of the equivalence classes; then the rules of arithmetic in Z/nZ
are inherited from those in Z via the natural map:

Let a, a′, b, b′ ∈ Z such that a = a′ and b = b′, that is there are k, l ∈ Z such
that a′ = a+ kn and b′ = b+ ln. Hence we have a′ + b′ = (a+ kn) + (b+ ln) =
(a + b) + (k + l)n and a′b′ = (a + kn)(b + ln) = ab + (al + bk + kln)n, thus
a′ + b′ = a+ b and a′b′ = ab.

In particular, the natural map becomes a ring homomorphism. Moreover, for
k ∈ Z we have νn(kn) = kn = 0, hence nZ ⊆ ker(νn); conversely, for a ∈ ker(νn)
we have a = νn() = 0, hence a = kn for some k ∈ Z, showing that ker(νn) ⊆ nZ.

b) We have already seen that restricting the natural map yields the bijection
ωn := νn|Zn

: Zn → Z/nZ : a 7→ a. Hence Zn becomes a commutative ring by
transport of structure, that is by letting a + b := ω−1n (ωn(a) + ωn(b)) =
ω−1n (a + b) = ω−1n (a+ b) = ((a + b) mod n) and a · b := ω−1n (ωn(a) · ωn(b)) =
ω−1n (a · b) = ω−1n (a · b) = ((a · b) mod n), for a, b ∈ Zn, the additive and multi-
plicative neutral elements being given by ω−1n (0) = 0 and ω−1n (1) = 1, respec-
tively. This also shows that ωn is a ring homomorphism. ]

Note that Z/nZ is the zero ring if and only if n = 1. Addition and multiplication
in the rings Z/nZ, where n ∈ {2, . . . , 5}, are as given below; note that the case
n = 2 is reminiscent of boolean algebra, by identfiying 0 and 1 with the logical
values false and true, respectively, and ‘+’ and ‘·’ with the logical operations
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exclusive or and and, respectively:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

(7.2) Example: Fermat numbers. For n ∈ N0 let Fn := 22
n

+ 1 ∈ N be the
n-th Fermat number. Then F0 = 21+1 = 3, F1 = 22+1 = 5, F2 = 24+1 = 17,
F3 = 28 + 1 = 257, F4 = 216 + 1 = 65537 are all primes, and it was conjectured
by Fermat [1640] that Fn always is a prime.

Nowadays, all Fn for n ∈ {5, . . . , 32} are known to be composite, but it still is
an open problem whether {F0, . . . , F4} are the only Fermat primes. Even worse,
complete factorisations are only known for n ≤ 11; see also (13.3).

For example, the Fermat number F5 = 232+1 = 4 294 967 297 ∼ 4·109 factorises
as F5 = 641 · 6 700 417 [Euler, 1732]. Having the candidate divisor 641 in our
hands, we may prove that actually 641 | F5 by showing that F5 = 0 ∈ Z/641Z:

We have 641 = 640 + 1 = 5 · 27 + 1, thus 5 · 27 = −1 ∈ Z/641Z, and 641 =

625+16 = 54 +24, thus 2
4

= −5
4 ∈ Z/641Z, hence F5 = 2

32
+1 = 2

4 ·228 +1 =

−5
4 · 27

4
+ 1 = −5 · 27

4
+ 1 = −(−1)4 + 1 = −1 + 1 = 0 ∈ Z/641Z. ]

(7.3) Theorem. Let n ∈ N.

a) Then 0 6= a ∈ Z/nZ is a zero-divisor if and only if gcd+(a, n) > 1.

b) The group of units of Z/nZ equals (Z/nZ)∗ = {a ∈ Z/nZ; gcd+(a, n) = 1}.
Hence the latter is also called the group of prime residues classes modulo n.

In particular, this shows that Z/nZ is an integral domain if and only if Z/nZ is
a field, which holds if and only if n is a prime.

Proof. Note that the greatest common divisors occurring in the assertions are
indeed independent of the residue class representatives chosen: If a, a′ ∈ Z such
that a = a′ ∈ Z/nZ, then we have a′ = a + kn for some k ∈ N, and thus
gcd(a′, n) = gcd(a+ kn, n) = gcd(a, n) ⊆ Z. Moreover, note that for a ∈ Z/nZ
we have gcd+(a, n) ∈ {1, . . . , n}, and gcd+(a, n) = n if and only if a = 0.
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Since Z/nZ is finite, we already know that any of its non-zero elements is either
a zero-divisor or a unit. Hence the arguments to follow are somewhat redundant,
but still we prefer to give them explicitly:

We show that a ∈ Z/nZ is a unit if and only if gcd+(a, n) = 1: Let a ∈ (Z/nZ)∗,

then there is b ∈ Z/nZ such that ab = 1 ∈ Z/nZ, that is there is k ∈ Z such that
ab+kn = 1 ∈ Z, which implies that gcd+(a, n) = 1. Conversely, if gcd+(a, n) =
1 then there are Bézout coefficients c, c′ ∈ Z such that ac+ nc′ = 1 ∈ Z, hence
we have ac = 1 ∈ Z/nZ, implying that a ∈ (Z/nZ)∗ such that a−1 = c ∈ Z/nZ.

We show that 0 6= a ∈ Z/nZ is a zero-divisor if and only if gcd+(a, n) > 1:
Let d := gcd+(a, n) > 1, then there is 0 6= b ∈ Zn such that bd = n, thus we

have n | ab, hence ab = 0 ∈ Z/nZ, implying that a ∈ Z/nZ is a zero-divisor.
Conversely, let gcd+(a, n) = 1, and let b ∈ Z/nZ such that ab = 0 ∈ Z/nZ,
then we have n | ab, and since a and n are coprime we infer that n | b, that is
b = 0 ∈ Z/nZ, which implies that a ∈ Z/nZ is not a zero-divisor.

The last assertion follows from observing that we have gcd+(a, n) = 1 for all
0 6= a ∈ Zn if and only if n is indecomposable, that is a prime. ]

Note that the above argument shows that the inverse of a ∈ (Z/nZ)∗ is found us-
ing the extended Euclidean algorithm: Computing gcd+(a, n) = 1 yields Bézout
coefficients c, c′ ∈ Z such that ac+ nc′ = 1 ∈ Z, thus a−1 = c ∈ Z/nZ.

8 Linear congruences

(8.1) Theorem. Let n ∈ N. Given a, b ∈ Z, the linear congruence aX ≡ b
(mod n) has a solution, that is there is x ∈ Z such that ax ≡ b (mod n), or
equivalently x ∈ Z/nZ such that ax = b ∈ Z/nZ, if and only if gcd+(a, n) | b.
In this case, but apart from this independently of the choice of b, there are
precisely gcd+(a, n) solutions x ∈ Z/nZ, or equivalently solutions x ∈ Zn.

Proof. Let d := gcd+(a, n). We first show that the condition given is necessary:

Given x ∈ Z/nZ, we have ax = b if and only if there is k ∈ Z such that
ax = b+ kn; in particular in this case we have d = gcd+(a, n) | ax− kn = b.

To show sufficiency, we may now let n′, a′, b′ ∈ Z such that n = dn′, a = da′

and b = db′. Then for a solution x ∈ Z/nZ of the linear congruence aX ≡ b
(mod n) we have da′x = db′+kdn′, for some k ∈ Z, hence a′x = b′+kn′, that is
x ∈ Z/n′Z is a solution of the linear congruence a′X ≡ b′ (mod n′). Conversely,
if x ∈ Z/n′Z is a solution of the latter, from a′x = b′ + kn′, for some k ∈ Z, we
infer ax = b+ kn, thus x ∈ Z/nZ is a solution of the given linear congruence.

For the natural maps νn : Z → Z/n′Z and νn′ : Z → Z/n′Z we have nZ =
ker(νn) ⊆ ker(νn′) = n′Z, hence by the homomorphism theorem there is an
induced natural map νnn′ : Z/nZ→ Z/n′Z : z 7→ z. The kernel of νnn′ is given as
ker(νnn′) = ker(νn′)/ ker(νn) = n′Z/nZ = {0 + nZ, n′ + nZ, . . . , (d− 1)n′ + nZ};
in particular we have | ker(νnn′)| = d.
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By the above, x is a solution of aX ≡ b (mod n) if and only if x is a solu-

tion of a′X ≡ b′ (mod n′). We have gcd+(a′, n′) = 1, hence a′ ∈ (Z/n′Z)∗.

Thus there is c ∈ (Z/n′Z)∗ such that a′c = 1 ∈ (Z/n′Z)∗, and we have

a′x = b′ ∈ Z/n′Z if and only if x = b′c ∈ Z/n′Z. Thus the given linear congru-
ence has a solution x := b′c ∈ Z/nZ, whose residue class νnn′(x) = x ∈ Z/n′Z
is uniquely determined, hence the set of solutions is given as x + ker(νnn′) =

{x, x+ n′, . . . , x+ (d− 1)n′} ⊆ Z/nZ. ]

In particular, we have a ∈ (Z/nZ)∗ if and only if we always have a solution,
which is equivalent to saying that solutions, if existent, are unique.

Moreover, in general, the solutions can be found using the extended Euclidean
algorithm: Computing gcd+(a, n) = d yields Bézout coefficients c, c′ ∈ Z such
that ac+ nc′ = d ∈ Z, hence letting n′ := n

d and a′ := a
d we have a′c+ n′c′ = 1,

and thus we have a′
−1

= c ∈ Z/n′Z. Hence the set of solutions is given as
{x, x+ n′, . . . , x+ (d− 1)n′} ⊆ Z/nZ, where x := b′c ∈ Z/nZ.

Example. We consider the linear congruence 35X ≡ b (mod 126), where we
may assume that b ∈ Z126. Hence we have n = 126 and a = 35, and there is
a solution if and only if d = 7 = gcd+(35, 126) | b, that is b ∈ {0, 7, . . . , 119}.
In this case we have n′ = n

d = 126
7 = 18 and a′ = a

d = 35
7 = 5, yielding

the linear congruence 5X ≡ b′ (mod 18), where b′ = b
d = b

7 ∈ Z18. From
d = 7 = 2 · 126− 7 · 35 = 2n− 7a, see (4.4), we get 1 = 2 · 18− 7 · 5 = 2n′ − 7a′,

hence we have 5
−1

= −7 = 11 ∈ Z/18Z. This yields x = 11b′ ∈ Z/18Z. Thus
the set of solutions is given as {11b′, 11b′ + 18, . . . , 11b′ + 108} ⊆ Z/126Z.

(8.2) Simultaneous linear congruences. Let n1, . . . , nk ∈ N, for some k ∈
N, and b1, . . . , bk ∈ Z. We wonder when the system of linear congruences X ≡ bi
(mod ni), for all i ∈ {1, . . . , k}, has a solution, and how these look like.

To this end, let Ii := niZEZ and
⊕k

i=1 Z/Ii be the direct sum of the quotient
rings Z/Ii, that is the Cartesian product of the sets Z/Ii, which is a commutative
ring again with respect to componentwise addition and multiplication. Then we
have the natural map νn1,...,nk

: Z →
⊕k

i=1 Z/Ii : x 7→ [x + I1, . . . , x + Ik], for

which we have ker(νn1,...,nk
) =

⋂k
i=1 Ii = lcm(n1, . . . , nk)+Z E Z. By the ho-

momorphism theorem, νn1,...,nk
induces a ring isomorphism Z/ ker(νn1,...,nk

)→
im(νn1,...,nk

), where the latter is described as follows:

Theorem: Generalised Chinese remainder theorem. Let Iij := Ii+ Ij =
niZ + njZ = gcd+(ni, nj)Z, for i < j ∈ {1, . . . , k}. Then we have

im(νn1,...,nk
) = {[b1, . . . , bk] ∈

k⊕
i=1

Z/Ii; bi + Iij = bj + Iij ∈ Z/Iij for all i < j}.
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Proof. Let R ⊆
⊕k

i=1 Z/Ii denote the right hand side, where since Ii, Ij ⊆
Iij the defining equations for R are indeed well-defined. By the natural map

νIiIij : Z/Ii → Z/Iij , for x ∈ Z we get νIiIij (x+ Ii) = x+ Iij = ν
Ij
Iij

(x+ Ij). Hence

we have im(ν) ⊆ R. For the converse, we first consider the case k = 2:

Writing n, n′ ∈ N and I := nZ + n′Z for simplicity, we have R = {[b, b′] ∈
Z/nZ ⊕ Z/n′Z; b + I = b′ + I ∈ Z/I}. Letting d := gcd+(n, n′), there are

Bézout coefficients s, t ∈ Z such that d = sn+ tn′. Now for [b, b′] ∈ R we have
b′ − b ∈ I = dZ, thus there is k ∈ Z such that b′ − b = kd = ksn + ktn′,
hence x := b + ksn = b′ − ktn′ ∈ Z fulfills x = b+ ksn = b ∈ Z/nZ and
x = b′ − ktn′ = b′ ∈ Z/n′Z, showing that νn,n′(x) = [b, b′]. Hence we conclude
that im(νn,n′) = R, settling this case.

Next, for k ≥ 2 we have the following relation gcd+(lcm+(n1, . . . , nk−1), nk) =
lcm+(gcd+(n1, nk), . . . , gcd+(nk−1, nk)): Since these numbers are determined
prime-by-prime, we may assume that ni = pαi , for some p ∈ P and αi ∈
N0; then in terms of the multiplicities αi ∈ N0 the left hand side is trans-
lated into min{max{α1, . . . , αk−1}, αk}, which is αk if αi ≥ αk for some i ∈
{1, . . . , k − 1}, and otherwise is max{α1, . . . , αk−1}; the latter in turn equals
max{min{α1, αk}, . . . ,min{αk−1, αk}}, representing the right hand side.

Now we proceed by induction on k ∈ N, where the case k = 1 is trivial. Hence
let k ≥ 2, and let [b1, . . . , bk] ∈ R. Letting Jk−1 :=

⋂k−1
i=1 Ii, the above relation

between greatest common divisors and lowest common multiples translates into
Jk−1+Ik =

⋂k−1
i=1 IikEZ. By induction we may assume that there is x ∈ Z/Jk−1

such that x + Ii = bi + Ii ∈ Z/Ii, for i ∈ {1, . . . , k − 1}. We have x + Iik =

bi+Iik = bk+Iik ∈ Z/Iik, for all i ∈ {1, . . . , k−1}, entailing x−bk ∈
⋂k−1
i=1 Iik =

Jk−1 + Ik, or equivalently x + Jk−1 + Ik = bk + Jk−1 + Ik ∈ Z/(Jk−1 + Ik).
Thus the two-moduli case yields the existence of y ∈ Z/(Jk−1 ∩ Ik) such that
y + Jk−1 = x+ Jk−1 ∈ Z/Jk−1 and y + Ik = bk + Ik ∈ Z/Ik. ]

Corollary: Chinese remainder theorem. Let now n1, . . . , nk be pairwise
coprime, that is gcd+(ni, nj) = 1, or equivalently Iij = Ii + Ij = Z, for all
i 6= j ∈ {1, . . . , k}. Then we have

i) lcm(n1, . . . , nk)+ =
∏k
i=1 ni, that is ker(νn1,...,nk

) =
⋂k
i=1 Ii =

∏k
i=1 Ii, and

ii) νn1,...,nk
is surjective, that is im(νn1,...,nk

) =
⊕k

i=1 Z/Ii.

Thus νn1,...,nk
induces a ring isomorphism Z/(

∏k
i=1 ni)Z→

⊕k
i=1 Z/niZ. ]

In other words, the system of linear congruences X ≡ bi (mod ni), for all i ∈
{1, . . . , k}, has a solution if and only if bi ≡ bj (mod gcd+(ni, ni)), for all i <
j ∈ {1, . . . , k}, and in this case the solution is unique in Z/lcm+(n1, . . . , nk)Z.
In particular, if the moduli n1, . . . , nk are pairwise coprime, then the system
always has a solution, which is unique in Z/(

∏k
i=1 ni)Z.
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Reduction to the coprime case. A single linear congruence can always be
replaced by a system of linear congruences with respect to prime power moduli;
but note that to do so the modulus in question has to be factorised first: If
n =

∏k
i=1 p

ai
i ∈ N, where pi ∈ P are pairwise distinct primes and ai ≥ 0, for

i ∈ {1, . . . , k}, then x ∈ Z/nZ solves the linear congruence X ≡ b (mod n) if
and only if x ∈ Z/paii Z solves the linear congruence X ≡ b (mod paii ), for all
i ∈ {1, . . . , k}. Hence the number of solutions modulo nZ is given as the product
of the number of solutions modulo paii Z, for i ∈ {1, . . . , k}.
Assuming this, since the solvability conditions are always fulfilled between co-
prime moduli, the remaining checks can be done prime-by-prime. Given p ∈ P,

applying the the natural maps νp
k

pk−1 , where k ≥ 2, shows that if the condi-
tions are fulfilled for p-powers, then only the linear congruence with respect to
the largest p-power occurring is irredundant. Hence this reduces the problem of
finding the solutions of a given system of linear congruences to finding a solution
of a system of linear congruences with respect to pairwise coprime moduli.

(8.3) Solving simultaneous linear congruences. The results of (8.2) are
made constructive using the extended Euclidean algorithm as follows:

a) In the general case, the Newton method runs as follows: Let l0 := 1 and
li := lcm+(n1, . . . , ni) = lcm+(ni, li−1), for i ∈ {1, . . . , k}. Then let x1 := b1 ∈
Z, and for i ∈ {2, . . . , k} let successively xi ∈ Z be a solution of the system

X ≡ bi (mod ni) and X ≡ xi−1 (mod li−1),

which, letting di := gcd+(ni, li−1) and si, ti ∈ Z being Bézout coefficients such

that di = sini + tili−1, is found as xi := bi + xi−1−bi
di

· sini ∈ Z. Note that the
solvability conditions translate precisely into the conditions di | (xi−1− bi), for
i ∈ {1, . . . , k}, and that xi is unique modulo liZ. This yields the following:

• l0 ← 1, l1 ← n1, x1 ← b1 mod l1
• for i ∈ [2, . . . , k] do
• li ← (nili−1) div gcd+(ni, li−1) # lcm+(ni, li−1)
• [di; si, ti]← EEA(ni, li−1) # di = gcd+(ni, li−1) = sini + tili−1
• if ((xi−1 − bi) mod di) > 0 then # no solution
• return fail

• xi ← (bi + (xi−1 − bi) · ((sini) div di)) mod li
• return xk

b) If the moduli n1, . . . , nk are pairwise coprime, there also is the more direct
Lagrange method: For i ∈ {1, . . . , k} let mi :=

∏
j 6=i ni. Then we have

gcd+(mi, ni) = 1, hence there are Bézout coefficients si, ti ∈ Z such that simi+

tini = 1. Thus we have simi = 1− tini = 1 ∈ Z/niZ, and simi = si ·
∏
j 6=i ni =

0 ∈ Z/njZ for all i 6= j ∈ {1, . . . , k}. Hence for x :=
∑k
i=1 bi · simi ∈ Z we have

x =
∑k
j=1 bjsjmj = bisimi = bi ∈ Z/niZ, for i ∈ {1, . . . , k}. Thus x solves the

given system of linear congruences, and is unique modulo (
∏k
i=1 ni)Z.
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Example. The system of linear congruences

X ≡ 1 (mod 21) and X ≡ 2 (mod 45)

does not have a solution: We have gcd+(21, 45) = 3, but 1 6≡ 2 (mod 3).

Alternatively, we may more explicitly argue as follows: The linear congruence
X ≡ 1 (mod 21) is equivalent to the system of linear congruences X ≡ 1
(mod 3) and X ≡ 1 (mod 7), while the linear congruence X ≡ 2 (mod 45)
is equivalent to the system of linear congruences X ≡ 2 (mod 9) and X ≡ 2
(mod 5); but now considering 3-power moduli we observe that x ≡ 1 (mod 9)
entails x ≡ 1 (mod 3), contradicting the condition x ≡ 2 (mod 3). ]

Example. The following example is taken from [2, Ch.8.1]: Six professors begin
courses of lectures on Monday, Tuesday, Wednesday, Thursday, Friday, and
Saturday, and announce their intentions of lecturing at intervals of two, three,
four, one, six, and five days respectively. The regulations of the university forbid
Sunday lectures (so that a Sunday lecture must be omitted). When first will all
six professors find themselves compelled to omit a lecture?

If x ∈ N is the day sought for, where x = 1 is the first Monday, this leads to the
following system of linear congruences:

X ≡ 1 (mod 2), X ≡ 2 (mod 3), X ≡ 3 (mod 4), X ≡ 4 (mod 1),

X ≡ 5 (mod 6), X ≡ 6 (mod 5), X ≡ 0 (mod 7).

To check the solvability conditions, we only have to consider pairs of non-coprime
moduli, which yields gcd(2, 4)+ = 2 where 1 ≡ 3 (mod 2), and gcd(2, 6)+ = 2
where 1 ≡ 5 (mod 2), as well as gcd(3, 6)+ = 3 where 2 ≡ 5 (mod 3), and
gcd(4, 6)+ = 2 where 3 ≡ 5 (mod 2). Hence the system has a solution, which is
unique modulo lcm+(2, 3, 4, 1, 6, 5, 7) = 22 · 3 · 5 · 7 = 420.

To find the solutions using the recursive method, we proceed as shown in Table
6; hence the smallest non-negative solution looked for is given as x = x7 =
371. Alternatively, we may transform the system suitably, in order to solve an
equivalent system with pairwise coprime moduli:

The linear congruence X ≡ 4 (mod 1) is always fulfilled, hence redundant. The
linear congruence X ≡ 5 (mod 6) is equivalent to the system of linear congru-
ences X ≡ 5 ≡ 1 (mod 2) and X ≡ 5 ≡ 2 (mod 3). The linear congruence
X ≡ 3 (mod 4) implies X ≡ 3 ≡ 1 (mod 2), hence the latter is redundant.
Thus we are left with the equivalent system of linear congruences

X ≡ 2 (mod 3), X ≡ 3 (mod 4), X ≡ 1 (mod 5), X ≡ 0 (mod 7).
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Table 6: Generalised Chinese remainder theorem.

i ni li di = sini + tili−1
sini

di
bi xi mod li

1 2 2 1 1
2 3 6 1 = 1 · 3− 1 · 2 3 2 5
3 4 12 2 = −1 · 4 + 1 · 6 −2 3 11
4 1 12 1 = 1 · 1 + 0 · 12 1 4 11
5 6 12 6 = 1 · 6 + 0 · 12 1 5 11
6 5 60 1 = 5 · 5− 2 · 12 25 6 11
7 7 420 1 = −17 · 7 + 2 · 60 −119 0 371

Now the moduli are pairwise coprime (and prime powers), and we get:

i ni mi 1 = simi + tini simi bi

1 3 140 1 = −1 · 140 + 47 · 3 −140 2
2 4 105 1 = 1 · 105− 26 · 4 105 3
3 5 84 1 = −1 · 84 + 17 · 5 −84 1
4 7 60 1 = 2 · 60− 17 · 7 120 0

This yields the solution x := −2 ·140+3 ·105−1 ·84+0 ·120 = −49 ∈ Z. Hence
the smallest non-negative solution looked for is given as (x mod 420) = 371. ]

9 Polynomial congruences

(9.1) Polynomial congruences. Given n ∈ N and a polynomial f ∈ Z[X], we
wonder when the polynomial congruence f(X) ≡ 0 (mod n) has a solution.

As in the special case of linear congruences, this question can be reduced to
prime power moduli: If n =

∏k
i=1 p

ai
i ∈ N, where pi ∈ P are pairwise distinct

primes and ai ≥ 0, for i ∈ {1, . . . , k}, then by the Chinese remainder theorem
x ∈ Z/nZ is a solution of the polynomial congruence f(X) ≡ b (mod n) if
and only if x ∈ Z/paii Z is a solution of the polynomial congruence f(X) ≡ b
(mod paii ), for all i ∈ {1, . . . , k}. Hence the number of solutions modulo nZ is
given as the product of the number of solutions modulo paii Z, for i ∈ {1, . . . , k}.
But in contrast to the case of systems of linear congruences, where for any
prime p ∈ P only a finite number of consistency checks are needed to decide
solvability, and then the solution is unique modulo the largest p-power occurring,
the situation here is more complicated:

Applying the natural map νp
k

pl
, where l ≤ k, to a solution of the polynomial

congruence f(X) ≡ 0 (mod pk) yields a solution of the polynomial congruence
f(X) ≡ 0 (mod pl). But now the question is whether conversely a solution
modulo plZ can be lifted to a solution modulo pkZ, and if so how many lifts there
are. The answer will turn out to be positive, so that in conclusion solving a given
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polynomial congruence modulo nZ reduces to solving polynomial congruences
modulo pZ, for various p ∈ P.

More precisely, let f ∈ Z/pZ[X] be the polyonomial obtained by applying the
natural map νp to the coefficients of the given polynomial f ∈ Z[X]. Then
solving the polynomial congruence f(X) ≡ 0 (mod p) is equivalent to finding
the roots of f in the field Z/pZ. Now Z/pZ[X] is Euclidean, with degree map
given by polynomial degree, and quotient and remainder given by polynomial
division, hence in particular is factorial. (We take these facts for granted here,
but they are not too difficult to show anyway.) This implies that the number
of roots a of f 6= 0, that is the number of (irreducible monic) divisors X − a of
f , is bounded above by the degree of f ; the polynomial f = 0 has all elements
of Z/pZ as roots. (We will not discuss here how root finding, or more generally
polynomial factorisation, can be done algorithmically and efficiently.)

Example. Let n := 15 = 3 · 5 and f := X2 − 1 ∈ Z[X]. To find the solutions
of the polynomial congruence f(X) ≡ 0 (mod 15), that is the square roots
of 1 ∈ Z/15Z, we first determine the solutions of the polynomial congruences
f(X) ≡ 0 (mod 3) and f(X) ≡ 0 (mod 3), respectively:

Given p ∈ P, the polynomial f = X2 − 1 ∈ Z/pZ[X] has precisely the roots
±1 ∈ Z/pZ. Hence we let a± := ±1 ∈ Z/3Z and b± := ±1 ∈ Z/5Z. Thus
1 = gcd +(5, 3) = −1 · 5 + 2 · 3 yields the four solutions −5a± + 6b± (mod 15),
that is {±1,±4} ⊆ Z/15Z, of the polynomial congruence X2 ≡ 1 (mod 15).

(9.2) Polynomial congruences modulo prime powers. We are now going
to describe under which circumstances a solution of a polynomial congruence
modulo pkZ, where p ∈ P and k ∈ N, can be lifted to a solution modulo plZ,
where l > k. To do so, need a few preparations first:

Let ∂
∂X : Z[X]→ Z[X] : f 7→ f (1) be the formal derivative, that is the Z-linear

map given by 1 7→ 0, and Xi 7→ iXi−1 for i ∈ N. Letting f (0) := f ∈ Z[X], by
induction on k ∈ N we get its k-th formal derivative f (k) := (f (k−1))(1) ∈ Z[X].
Hence we have f (k)(Xi) = 0 for i ∈ {0, . . . , k−1}, and f (k)(Xi) = i!

(i−k)!X
i−k =

k!
(
i
k

)
Xi−k for i ≥ k. Thus we may let f [k] := 1

k!f
(k) ∈ Z[X] be the k-th Hasse-

Teichmüller derivative of f .

Now, for i ∈ N0, binomial expansion yields (X + Y )i =
∑i
k=0

(
i
k

)
Y i−kXk ∈

Z[X,Y ], where we have
(
i
k

)
Y i−k = (Xi)[k](Y ), that is the evaluation of the k-th

Hasse-Teichmüller derivative of Xi ∈ Z[X] at Y . Thus for any f ∈ Z[X] we get
f(Y +X) =

∑
k≥0 f

[k](Y ) ·Xk ∈ Z[X,Y ]. In particular, evaluating at [X−a, a]

for a ∈ Z, we get the Taylor expansion f(X) =
∑
k≥0 f

[k](a)·(X−a)k ∈ Z[X],

and evaluating at [b, a] for a, b ∈ Z, yields f(a+ b) =
∑
k≥0 f

[k](a) · bk ∈ Z.

Theorem: Hensel’s Lemma. Let p ∈ P, let f ∈ Z[X], and let a ∈ Z such
that f(a) ≡ 0 (mod pk) for some k ∈ N. Moreover, let l ∈ {1, . . . , k} and
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m ∈ {0, . . . , l} such that pm = gcd+(f (1)(a), pl). Then precisely one of the
following cases occurs:

i) If m = 0, that is f (1)(a) 6≡ 0 (mod p), then there is a unique â ∈ Z/pk+lZ
such that â ≡ a (mod pk) and f(â) ≡ 0 (mod pk+l).

ii) If m > 0 and f(a) 6≡ 0 (mod pk+m), then there is no element â ∈ Z/pk+lZ
such that â ≡ a (mod pk) and f(â) ≡ 0 (mod pk+l).

iii) If m > 0 and f(a) ≡ 0 (mod pk+m), then there precisely pm elements
â ∈ Z/pk+lZ such that â ≡ a (mod pk) and f(â) ≡ 0 (mod pk+l).

Moreover, for any â ocurring above we have gcd+(f (1)(â), pl) = pm.

Proof. We consider x := a+ ypk ∈ Z for y ∈ Z. Then Taylor expansion yields
f(x) = f(a + ypk) =

∑
j≥0 f

[j](a) · (ypk)j = f(a) + f (1)(a) · ypk + y2p2kz ∈ Z,

where z :=
∑
j≥2 f

[j](a)·(ypk)j−2 ∈ Z. Hence we have f(x) ≡ f(a)+f (1)(a)·ypk

(mod pk+l). Moreover, there is b ∈ Z such that f(a) = bpk. Hence we have
f(a)+f (1)(a) ·ypk = pk ·(b+f (1)(a) ·y) ∈ Z. Thus we have f(x) ≡ 0 (mod pk+l)
if and only if b + f (1)(a) · y ≡ 0 (mod pl). Hence we are led to consider the
latter linear congruence:

If m = 0, that is f (1)(a) ∈ (Z/plZ)∗, then the linear congruence f (1)(a)·Y +b ≡ 0

(mod pl) has the unique solution y := −b · f (1)(a)
−1
∈ Z/plZ. Hence â :=

a+ ypk ∈ Z is the unique lift modulo pk+lZ, implying i).

If m > 0, then the linear congruence f (1)(a) ·Y + b ≡ 0 (mod pl) has a solution
if and only if b ≡ 0 (mod pm), or equivalently f(a) ≡ 0 (mod pk+m). Hence,
if b 6≡ 0 (mod pm) then the latter linear congruence does not have a solution,
implying ii), while if b ≡ 0 (mod pm) then it has precisely pm solutions.

Finally, since â ≡ a (mod pk) we have f (1)(â) ≡ f (1)(a) (mod pl), implying
that gcd+(f (1)(â), pl) = gcd+(f (1)(a), pl) = pm. ]

The typical cases are ‘simple root’ lifting m = 0, where l = 0 or l = k, and the
exceptional lifting m = l = 1.

Remark. Hensel lifting is a ‘p-adic’ analogue of the (quadratically convergent)
Newton iteration to find zeroes of real-valued functions: Let f ∈ C2(I) be a
two-fold continuously differentiable function, where I ⊆ R is an open interval,
such that f(ξ) = 0 for some ξ ∈ I, and f (1) > 0 and f (2) < 0 on I, where f (1) :=
∂f
∂x and f (2) := ∂f(1)

∂x are the first and second derivatives of f . Choosing x0 ∈ I,

and letting xi+1 := xi− f(xi)
f(1)(xi)

, for i ∈ N0, it can be shown that the xi are well-

defined, and that limi→∞ xi = ξ converges (quadratically). This is motivated by
the idea of replacing f by the linear part l of its Taylor expansion: The tangent
line to the graph of f at [xi, f(xi)] is given as l(x) := f(xi) + f (1)(xi) · (x− xi),
for x ∈ R, where l(x) = 0 if and only if x := xi − f(xi)

f(1)(xi)
.
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Example. Let f := X2 − 2 ∈ Z[X], hence f (1) = 2X ∈ Z[X]. We consider the
polynomial congruence f(X) ≡ 0 (mod pk) for various p ∈ P and k ∈ N:

Let p := 7. Then we have f = X2 − 2 = (X − 3)(X + 3) ∈ Z/7Z[X] and

f (1) = 2X ∈ Z/7Z[X]. Hence we may let a := 3. Then we have f(±a) ≡ 0
(mod 7) and f (1)(±a) ≡ ∓1 (mod 7), thus m = 0. Running Hensel lifting on a,
we get the unique solution of the polynomial congruence f(X) ≡ 0 (mod 7k),
for k ∈ N, being congruent to a modulo 7Z, as indicated in Table 7, for l = 1
and l = k, respectively; we use numerically smallest residues in Z/7kZ, and
denotes elements of Z/7Z. Since negating respects solutions modulo 7kZ, for
k ∈ N, Hensel lifting on −a runs in parallel with opposite signs.

For p := 5 we have {a2 ∈ Z/5Z; a ∈ Z/5Z} = {0,±1}, hence f = X2 −
2 ∈ Z/5Z[X] does not have a root in Z/5Z[X], thus neither of the polynomial
congruences f(X) ≡ 0 (mod 5k), where k ∈ N, has a solution. Similarly, for
p := 3 we have {a2 ∈ Z/5Z; a ∈ Z/5Z} = {0, 1}, hence f = X2 − 2 ∈ Z/3Z[X]
does not have a root in Z/3Z[X], thus neither of the polynomial congruences
f(X) ≡ 0 (mod 3k), where k ∈ N, has a solution.

Let p := 2. Then we have f = X2 ∈ Z/2Z[X] and f (1) = 0 ∈ Z/2Z[X]. Hence
we may let a := 0. Then we have f(a) ≡ 0 (mod 2) and f (1)(a) ≡ 0 (mod 2),
hence we have m = l = k = 1. Since f(a) ≡ −2 6≡ 0 (mod 22), the polynomial
congruences f(X) ≡ 0 (mod 2k), for k ≥ 2, do not have a solution. (Indeed, a
square in Z is odd or divisible by 4, thus is incongruent to 2 modulo 4Z.) ]

IV Residues

10 Prime residue classes

(10.1) Euler’s totient function. A map α : N→ C is also called a number
theoretic function. A number theoretic function is called multiplicative if
for all m,n ∈ N such that gcd+(m,n) = 1 we have α(mn) = α(m)α(n). In this
case, if α 6= 0 then we have α(1) = 1, and using factorisations α is uniquely
determined by its values on prime powers. Properties of number theoretic func-
tions are of general interest. Here is a most prominent example:

Recall that for n ∈ N the group of prime residue classes equals (Z/nZ)∗ =
{a ∈ Z/nZ; gcd+(a, n) = 1}. This gives rise to Euler’s totient function
ϕ : N→ N : n 7→ |(Z/nZ)∗|. In particular, we have ϕ(1) = 1, and n is a prime if
and only if ϕ(n) = n− 1.

Proposition. a) Euler’s totient function ϕ is multiplicative.

b) For p ∈ P and k ∈ N we have ϕ(pk) = (p−1)·pk−1; in particular ϕ(p) = p−1.

Proof. a) For m,n ∈ N such that gcd+(m,n) = 1, by the Chinese remain-
der theorem we have the ring isomorphism Z/mnZ ∼= Z/mZ ⊕ Z/nZ : a +
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Table 7: Hensel lifting.

k a b y

1 3 1 1
2 10 2 2
3 108 −1 −1
4 −235 2 2
5 4567 2 2
6 38181 1 1
7 155830 2 2
8 1802916 −3 −3
9 −15491487 0 0
1 −15491487 0 0

11 −15491487 3 3
12 5916488742 1 1
13 19757775943 1 1
14 116646786350 0 0
15 116646786350 2 2
16 9611769806236

k a b f (1)(a)−1 y

1 3 1 −1 1
2 10 2 −22 −5
4 −235 23 −659 751
8 1802916 563854 450729 1667320

16 9611769806236 2779957025294 2402942451559 −6397056082836

mnZ 7→ [a+nZ, a+mZ]. Hence this induces a group isomorphism (Z/mnZ)∗ ∼=
(Z/mZ)∗ × (Z/nZ)∗, where the right hand side becomes a group with respect
to componentwise multiplication. Thus we infer ϕ(mn) = ϕ(m)ϕ(n).

b) For k ∈ N we have (Z/pkZ)∗ = {x ∈ Z/pkZ; gcd+(x, pk) = 1} = {x ∈
Z/pkZ; gcd+(x, p) = 1} which is in bijection with {x ∈ Zpk ; gcd+(x, p) = 1} =
{x ∈ Zpk ; p - x} = Zpk \ {x ∈ Zpk ; p | x} = Zpk \ {py ∈ Zpk ; y ∈ Zpk−1}. This
entails ϕ(pk) = |(Z/pkZ)∗| = |Zpk | − |Zpk−1 | = pk − pk−1 = (p− 1) · pk−1. ]

This elucidates the cardinality of the finite group (Z/nZ)∗. We now proceed to
investigate into its group structure. By the above argument, we will be able to
reduce to the case where n is a prime power. We need a few general preparations
from finite group theory first:

(10.2) Cosets. Let G be a (multiplicative) group, and let U ≤ G be a sub-
group. We consider the following relation ∼U on G: For elements g, h ∈ G we
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let g ∼U h if there is u ∈ U such that h = ug. Then from g = 1 · g we infer that
∼U is reflexive; from h = ug we get g = u−1h, showing that ∼U is symmetric;
and from h = ug and k = vh, for k ∈ G and v ∈ U , we get k = vug, implying
that ∼U is transitive. Thus ∼U is an equivalence relation on G.

The equivalence class Ug := {ug ∈ G;u ∈ U} ⊆ G of g ∈ G is called the
associated (right) coset of U in G. Let U/G := {Ug ⊆ G; g ∈ G} be the set
of all cosets. Hence choosing a (right) transversal T ⊆ G of U in G, that is
a set of representatives of the equivalence classes, we have G =

∐
t∈T Ut; note

that a transversal always exists by the Axiom of Choice.

Lagrange’s Theorem. Let G be finite and U ≤ G. For the associated group
orders we have |U | | |G|.

Proof. For g ∈ G, the surjective map U → Ug : u 7→ ug is injective as well,
hence is a bijection: For u, v ∈ U such that ug = vg we get u = ugg−1 =
vgg−1 = v. This implies that all cosets have the same cardinality |U |, which
entails |G| = |U | · |T |; note that by assumption all cardinalities are finite. ]

(10.3) Element orders. Let G be a group, and g ∈ G. Then 〈g〉 := {gk ∈
G; k ∈ Z} ≤ G is the smallest subgroup of G containing g: Any subgroup of
G containing g also encompasses 〈g〉; and 〈g〉 contains 1G and is closed with
respect to multiplication and taking inverses, thus indeed is a subgroup of G.

The subgroup 〈g〉 is called the subgroup of G generated by g. The number
|g| := |〈g〉| ∈ N

.
∪ {∞} is called the order of g. In particular, if G is finite, then

|g| is finite as well, and Lagrange’s Theorem implies that |g| | |G|.

Proposition. For g ∈ G let I(g) := {i ∈ Z; gi = 1}.
a) Then I(g) E Z is an ideal, where we have I(g) = {0} if and only if |g| =∞.
Moreover, Z/I(g) → 〈g〉 : k 7→ gk is an isomorphism from the additive group
(Z/I(g),+) to the multiplicative group 〈g〉.
b) If |g| is finite, then we have I(g) = |g|Z and 〈g〉 = {gk ∈ G; k ∈ Z|g|}; in

particular, we have g|g| = 1, and thus if G is finite we infer g|G| = 1.

Proof. a) We have g0 = 1 ∈ G, and for i, j ∈ I(g) we have g−i = (gi)−1 = 1
and gi+j = gigj = 1, showing that I(g) ⊆ Z is an additive subgroup; and for
k ∈ Z we get gik = (gi)k = 1, showing that I(g)EZ is an ideal. Now for k, l ∈ Z
we have gk = gl if and only if gk−l = 1, that is k − l ∈ I(g), or equivalently
k = l ∈ Z/I(g). Hence the map Z/I(g) → 〈g〉 : k 7→ gk is well-defined and
a bijection, where from k + l = k + l 7→ gk+l = gkgl we infer that it is a
homormorphism from (Z/I(g),+) to 〈g〉. In particular, we have I(g) = {0} if
and only if |Z/I(g)| =∞, that is |g| =∞.
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b) If |g| is finite, then {0} 6= I(g) = nZE Z is principal, where we may assume
that n ∈ N is smallest such that n ∈ I(g). From n = |Z/I(g)| = |〈g〉| = |g| we
get I(g) = |g|Z. The last assertion follows from |g| | |G|. ]

Corollary. a) Let n := |g| be finite. Then for k ∈ Z we have |gk| = n
gcd+(k,n) .

In particular, we have |gk| = n, that is 〈gk〉 = 〈g〉, if and only if gcd+(k, n) = 1,

in other words if and only if k ∈ (Z/nZ)∗.

b) Let gn = 1 for some n ∈ N, and let p1, . . . , pr ∈ P be the prime divisors of

n, where r ∈ N0. Then |g| = n if and only if g
n
pi 6= 1 for all i ∈ {1, . . . , r}.

Proof. a) For i ∈ Z we have i ∈ I(gk), that is gik = 1, if and only if n | ik,
which holds if and only if n

gcd+(k,n) | i; entailing I(gk) = n
gcd+(k,n) · ZE Z.

b) If |g| = n then g has the required properties. Conversely, let g fulfill these
conditions. Then from gn = 1 we infer that |g| | n. Assume that |g| < n, then
|g| is a proper divisor of n, and thus using the factorisation of n we infer that

|g| | n
pi

, for some i ∈ {1, . . . , r}, entailing g
n
pi = 1, a contradiction. ]

(10.4) Cyclic groups. Let G be a group. Then G is called cyclic, if there is
g ∈ G such that G = 〈g〉. In this case we write G ∼= C|g|. For example, we have
(Z,+) = 〈1〉 = 〈−1〉, which is infinite, and for n ∈ N we have (Z/nZ,+) = 〈1〉,
hence the latter is cyclic of order n.

Theorem: Characterisation of cyclic groups. Let G be finite.

a) Let G be cyclic. Then any subgroup of G is cyclic as well. There is a subgroup
of G of order d ∈ N if and only if d | |G|; in this case it is uniquely determined.

In particular, there are precisely ϕ(|G|) elements of G which can be chosen as
a generator, where ϕ denotes Euler’s totient function.

b) The group G is cyclic if and only if G has at most one subgroup of order d
for any d ∈ N. In particular, if |G| is a prime then G is cyclic.

Proof. a) Let G = 〈g〉 such that n := |G|. For U ≤ G let IU (g) := {i ∈ Z; gi ∈
U}. Then we have g0 = 1 ∈ U , and for i, j ∈ IU (g) we have g−i = (gi)−1 ∈ U
and gi+j = gigj ∈ U , showing that IU (g) ⊆ Z is an additive subgroup; and for
k ∈ Z we get gik = (gi)k ∈ U , showing that IU (g) E Z is an ideal. Hence we
have IU (g) = mZ, for some m ∈ N, and thus U = 〈gm〉.
Since the order of any subgroup of G divides |G|, we only have to show existence
and uniqueness in this case: Hence let d | n and m := n

d ∈ N. Then U :=
〈gm〉 ≤ G has order |gm| = n

m = d. As for uniqueness, if k ∈ Z such that
|gk| = d, then we have n

gcd+(k,n) = d = n
m , hence m = gcd+(k, n) | k. This

implies gk ∈ 〈gm〉 = U , thus U contains all elements of G of order d.
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This proves a). Before proceeding we note that, counting the possible generators
of all subgroups of G, we have shown that

∑
d∈N,d |n ϕ(d) = n.

b) If G is cyclic, then we have just seen that G has the required property.
To show the converse, let G fulfill the assumption on the subgroup structure,
where n := |G|. Given d ∈ N, there is an element of G of order d only if
d | n. In this case, if there is an element g ∈ G of order d, then 〈g〉 ≤ G
is the unique subgroup of order d. Thus all elements of order d generate one
and the same subgroup, which is cyclic, and thus has precisely ϕ(d) elements of
order d. Hence the number of all elements of order d < n is bounded above by∑
d |n,d6=n ϕ(d) = n− ϕ(n) < n. Thus there is an element of order n. ]

(10.5) Prime residue classes. The preceeding considerations imply the fol-
lowing classical theorems due to Euler, Fermat and Wilson, but we also
provide direct proofs:

Euler’s Theorem [1735]. For n ∈ N and a ∈ (Z/nZ)∗ we have aϕ(n) = 1.

Proof. This follows from |a| | |(Z/nZ)∗| = ϕ(n).

More directly, we may proceed as follows: For a ∈ (Z/nZ)∗ we consider the bijec-
tion λa : Z/nZ→ Z/nZ : x 7→ ax. Since for x ∈ (Z/nZ)∗ we have ax ∈ (Z/nZ)∗

as well, we infer that λa restricts to a bijection λa : (Z/nZ)∗ → (Z/nZ)∗. Hence
we have aϕ(n) ·

∏
x∈(Z/nZ)∗ x =

∏
x∈(Z/nZ)∗ ax =

∏
x∈(Z/nZ)∗ x ∈ (Z/nZ)∗, thus

multiplying with
(∏

x∈(Z/nZ)∗ x
)−1 ∈ (Z/nZ)∗ yields aϕ(n) = 1 ∈ (Z/nZ)∗. ]

Fermat’s Theorem [1640]. For p ∈ P and a ∈ (Z/pZ)∗ = (Z/pZ) \ {0} we
have ap−1 = 1 ∈ (Z/pZ)∗; thus for all a ∈ Z/pZ we have ap = a ∈ Z/pZ.

Proof. For a 6= 0 this is Euler’s Theorem for the special case of prime moduli.

Again, more directly we may proceed as follows: First note that for i ∈ {0, . . . , p}
we have

(
p
i

)
= p·(p−1)···(p−i+1)

i·(i−1)···1 ∈ Z, thus for i 6∈ {0, p} we have
(
p
i

)
≡ 0 (mod p),

while
(
p
0

)
=
(
p
p

)
= 1. Now we show that ap ≡ a (mod p), for a ∈ N0, proceeding

by induction: The case a = 0 being trivial, let a ≥ 1. Then we have (a+ 1)p ≡∑p
i=0

(
p
i

)
ai ≡ ap + 1 ≡ a+ 1 (mod p).

In other words, we have ap = a ∈ Z/pZ, for a ∈ Z/pZ. If a 6= 0, then a ∈
(Z/pZ)∗, thus multiplying with a−1 ∈ (Z/pZ)∗ yields ap−1 = 1 ∈ (Z/pZ)∗. ]

Wilson’s Theorem [1770]. Let 1 6= n ∈ N. Then n is a prime if and only
if (n − 1)! ≡ −1 (mod n). In this case, if n is an odd prime, then we have(
(n−12 )!

)2 ≡ (−1)
n+1
2 (mod n).
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Proof. Let n be decomposable. We prove slightly more than asserted: If n = 4
then 3! ≡ 2 (mod 4); if n = p2 for an odd prime p, then n > 2p implies
n = p2 | (n− 1)!, thus (n− 1)! ≡ 0 (mod n). Thus we may assume that n = ab
where 1 < a < b < n, hence n = ab | (n− 1)!, thus (n− 1)! ≡ 0 (mod n).

Let now n = p be a prime. Then, by Fermat’s Theorem, for all a ∈ (Z/pZ)∗

we have ap−1 = 1, hence (Z/pZ)∗ is the set of roots of Xp−1 − 1 ∈ Z/pZ[X],
thus Xp−1 − 1 =

∏
a∈(Z/pZ)∗(X − a) ∈ Z/pZ[X]. Evaluating at X 7→ 0 yields∏

a∈(Z/pZ)∗ a = (−1)p−2 ∈ Z/pZ, entailing the first assertion.

Alternatively, without invoking Fermat’s Theorem, we may argue as follows:
We may assume that p is odd. Then for a ∈ (Z/pZ)∗ we have a = a−1 if and
only if a2 = 1, that is a is a root of X2− 1 = (X − 1)(X + 1) ∈ Z/pZ[X], which
thus holds if and only if a ∈ {±1}. Hence pairing elements with their inverses
yields

∏
a∈(Z/pZ)∗\{±1} a = 1, thus −1 · 1 ·

∏
a∈(Z/pZ)∗\{±1} a = −1 ∈ (Z/pZ)∗.

Finally, for an odd prime p we have −1 ≡ (p − 1)! ≡ (p−12 )! ·
∏ p−1

2
i=1 (p − i) ≡

(−1)
p−1
2 ·

(
(p−12 )!

)2
(mod p), implying the second assertion. ]

(10.6) Prime moduli. The basic structural observation is the following the-
orem, which in its general form is due to Artin, but the number theoretic case
was already known to Gauss.

Artin’s Theorem. Let K be a field and G ≤ K∗ be finite. Then G is cyclic.

Proof. Let U ≤ G be a subgroup of order d ∈ N. Then all elements of U have
order dividing d, and thus are roots of the polynomial Xd− 1 ∈ K[X]. Since K
is a field, there are at most d such roots in K. Hence U consists of all elements
of G of order dividing d, thus U is uniquely determined. This shows that G has
at most one subgroup of order d for any d ∈ N, thus G is cyclic. ]

In particular, if d ∈ Z such that d < 0 and squarefree, then Z[
√
d] ⊆ Q[

√
d], and

Z[ 1+
√
d

2 ] ⊆ Q[
√
d] whenever 4 | (d− 1), have finite groups of units, hence these

are cyclic: Indeed, for d 6= −1 we have Z[
√
d]∗ = {±1} ∼= C2, while Z[i]∗ =

{1, i, i2, i3} ∼= C4; for 4 | (d − 1) and d 6= −3 we have Z[ 1+
√
d

2 ]∗ = {±1} ∼= C2,

while Z[ζ∗6 = {1, ζ6, ζ26 , . . . , ζ56} ∼= C6, where ζ6 := 1+
√
−3

2 .

More interestingly, if p ∈ P then (Z/pZ)∗ ∼= Cp−1 is cyclic [Gauss, 1798]. An
element ρ ∈ (Z/pZ)∗ such that 〈ρ〉 = (Z/pZ)∗, that is having order p − 1, is
called a primitive root modulo p. There are precisely ϕ(p− 1) primitive roots
modulo p, which for a fixed one ρ are given as {ρk ∈ (Z/pZ)∗; k ∈ (Z/(p−1)Z)∗}.
Hence it suffices to determine the smallest positive primitive root ρ ∈ Zp; those
for p < 1000 have been found by Jacobi [1839], and are given in Table 8.

Artin’s Conjecture [1927] says that any a ∈ Z \
(
{−1} ∪ {b2 ∈ Z; b ∈ Z}

)
is

a primitive root modulo infinitely many primes. Note that indeed 0 6∈ (Z/pZ)∗

and −1 ∈ (Z/pZ)∗ has order 2, for any odd prime p, and that a = b2, for some
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Table 8: Smallest primitive roots.

ρ p < 1000

1 2
2 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173,

179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443,
461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677,
701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947

3 7, 17, 31, 43, 79, 89, 113, 127, 137, 199, 223, 233, 257, 281, 283, 331, 353, 401,
449, 463, 487, 521, 569, 571, 593, 607, 617, 631, 641, 691, 739, 751, 809, 811,
823, 857, 881, 929, 953, 977

5 23, 47, 73, 97, 103, 157, 167, 193, 263, 277, 307, 383, 397, 433, 503, 577, 647,
673, 683, 727, 743, 863, 887, 937, 967, 983

6 41, 109, 151, 229, 251, 271, 367, 733, 761, 971, 991
7 71, 239, 241, 359, 431, 499, 599, 601, 919, 997

10 313, 337
11 643, 719, 769, 839
13 457, 479
15 439
17 311, 911
19 191
21 409

0 6= b ∈ Z, implies a
p−1
2 = b

p−1
= 1 ∈ (Z/pZ)∗ for any odd prime p such that

a ∈ (Z/pZ)∗, which in particular encompasses all odd primes p > a.

Corollary. For p ∈ P odd, the congruence X2 ≡ −1 (mod p) is solvable if and

only if p ≡ 1 (mod 4); in this case, the solutions are ±(p−12 )! ∈ Z/pZ.

Proof. The solutions of the congruence in question are precisely the elements
x ∈ (Z/pZ)∗ fulfilling x2 = −1. Since this implies x4 = 1, these are precisely the
elements of (Z/pZ)∗ of order 4. Now we have (Z/pZ)∗ ∼= Cp−1, hence (Z/pZ)∗

has elements of order 4 if and only if p ≡ 1 (mod 4).

In this case, there are ϕ(4) = 2 such elements. (This is consistent with the fact
that the polynomial X2 +1 ∈ Z/pZ[X] has at most two roots in Z/pZ.) Finally,

it follows from Wilson’s Theorem that
(
(p−12 )!

)2 ≡ −1 (mod p), ]

11 Groups of prime residues

(11.1) The group of prime residue classes. Given n =
∏r
i=1 p

ai
i ∈ N, where

pi ∈ P are pairwise distinct, ai ∈ N and r ∈ N0, the Chinese remainder theorem
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implies Z/nZ ∼=
⊕r

i=1 Z/p
ai
i Z as commutative rings, hence for the associated

groups of units we have, as commutative groups:

(Z/nZ)∗ ∼=
r∏
i=1

(Z/paii Z)∗.

Thus, in order to describe the group structure of (Z/nZ)∗, it suffices to deal
with the groups (Z/pkZ)∗, where p ∈ P and k ∈ N.

(11.2) Prime power moduli. The structure of (Z/pkZ)∗, where p ∈ P and
k ∈ N, is elucidated by the theorem to follow; recall that |(Z/pkZ)∗| = ϕ(pk) =
(p− 1)pk−1. To proceed, we need a purely group theoretic lemma first:

Lemma. Let G be a commutative finite group, and let g, h ∈ G.

a) If 〈g〉∩〈h〉 = {1} then we have 〈g, h〉 ∼= 〈g〉×〈h〉, in particular |〈g, h〉| = |g|·|h|.
b) If gcd+(|g|, |h|) = 1 then 〈g〉 ∩ 〈h〉 = {1}, and 〈g, h〉 = 〈gh〉 is cyclic.

Proof. a) Let n := |g| ∈ N and m := |h| ∈ N. Then we have 〈g, h〉 = {gihj ∈
G; i ∈ Zn, j ∈ Zm} ≤ G: Since G is commutative, the right hand side indeed is
a subgroup, which is necessarily contained in any subgroup containing {g, h}.
Letting i, i′ ∈ Zn and j, j′ ∈ Zm such that gihj = gi

′
hj
′
, we get gi−i

′
= hj

′−j ∈
〈g〉 ∩ 〈h〉 = {1}, thus gi = gi

′
and hj = hj

′
, entailing i = i′ and j = j′. Hence

we have |〈g, h〉| = nm, and thus any element of 〈g, h〉 can be written uniquely
as gihj , where i ∈ Zn and j ∈ Zm. In other words, we have 〈g, h〉 ∼= 〈g〉 × 〈h〉.
b) For x ∈ 〈g〉 ∩ 〈h〉 we have |x| | gcd+(n,m) = 1, implying 〈g〉 ∩ 〈h〉 = {1},
hence 〈g, h〉 ∼= 〈g〉×〈h〉. Thus, by uniqueness, for k ∈ Z we have (gh)k = gkhk =
1 if and only if nm = lcm+(n,m) | k, hence |gh| = nm = |〈g, h〉|. ]

Theorem. a) Let p ∈ P be odd, and let ρ ∈ Z be a primitive root modulo p.
Then for k ∈ N we have (Z/pkZ)∗ ∼= 〈ρk〉×〈1 + p〉 ∼= Cp−1×Cpk−1

∼= C(p−1)pk−1 ,

where ρk := ρp
k−1

has order p− 1, and 1 + p has order pk−1.

b) For k ≥ 2 we have (Z/2kZ)∗ ∼= 〈−1〉×〈5〉 ∼= C2×C2k−2 , where 5 = 1 + 22 has
order 2k−2; hence (Z/2kZ)∗ is not cyclic for k ≥ 3, while (Z/4Z)∗ = {−1} ∼= C2

and (Z/2Z)∗ = {1}.

Proof. i) For p odd, we first specify an element ρk ∈ (Z/pkZ)∗ of order p− 1:

We consider the polynomial g := Xp−1 − 1 ∈ Z[X], whose Hasse-Teichmüller
derivatives are given as g[j] =

(
p−1
j

)
Xp−1−j ∈ Z[X], for j ∈ {1, . . . , p − 1}.

Since
(
p−1
j

)
6≡ 0 (mod p), for any a ∈ (Z/pZ)∗ we get g[j](a) 6≡ 0 (mod p). Now

let ρ1 := ρ ∈ (Z/pZ)∗ be a primitive root. Hence proceeding by induction on
k ∈ N, (linear) Hensel lifting shows that there there is a unique element ρk+1 ∈
(Z/pk+1Z)∗ such that ρk+1 − ρk ≡ 0 (mod pk) and ρp−1k+1 ≡ 1 (mod pk+1).
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Now ρk+1 is found as follows: We have g[1](ρk) ≡ (p− 1)ρp−2k ≡ −ρ−1k (mod p).

Hence letting g(ρk) = ρp−1k −1 = bkp
k, for some bk ∈ Z, and y ∈ Z such that y ≡

−bk · (−ρ−1k )−1 ≡ bkρk (mod p), we get ρk+1 ≡ ρk+ρkbkp
k ≡ ρk(1+bkp

k) ≡ ρpk
(mod pk+1). Hence by induction on k ∈ N we get ρk+1 = ρp

k−1

(mod pk+1).

By construction we have ρp−1k = 1 ∈ (Z/pkZ)∗, hence ρk has order dividing
p − 1. But since ρk ≡ ρ (mod p), and ρ ∈ (Z/pZ)∗ has order p − 1, using the

natural map νp
k

p : Z/pkZ→ Z/pZ we conclude that ρk has order p− 1 as well.

ii) For p arbitrary, we specifiy elements of (Z/pkZ)∗ of maximum p-power order:

For any p ∈ P and k ∈ N0 and j ∈ {1, . . . , pk} we have
(
pk

j

)
= 1

j! ·
∏j−1
i=0 (pk−i) ∈

Z, and thus νp
((
pk

j

))
= k+ νp((j− 1)!)− νp(j!) = k− νp(j). Moreover, we have

j > νp(j) for all j ∈ N, where for p odd we have j ≥ νp(j) + 2 for all j ≥ 2,
while for p = 2 we have j ≥ ν2(j) + 2 for all j ≥ 3.

We consider the polynomial fk := Xpk − 1 ∈ Z[X], whose Hasse-Teichmüller

derivatives are given as f
[j]
k =

(
pk

j

)
Xpk−j ∈ Z[X], for j ∈ {1, . . . , pk}. Evalu-

ating at 1 yields f
[j]
k (1) =

(
pk

j

)
∈ Z. Hence applying Taylor expansion, using

fk(1) = 0, for all a ∈ Z we obtain (1+a)p
k −1 = fk(1+a) =

∑pk

j=0 f
[j]
k (1) ·aj =∑pk

j=1

(
pk

j

)
· aj = pk · a+

∑pk

j=2

(
pk

j

)
· aj ∈ Z. Now we distinguish two cases:

ii) a) Let p be odd and k ≥ 2, and let a := p. Then we get (1 + p)p
k−2 − 1 =

fk−2(1 + p) = pk−1 +
∑pk−2

j=2

(
pk−2

j

)
· pj . We have νp

((
pk−2

j

)
· pj
)

= (k − 2) −
νp(j) + j ≥ k, for j ≥ 2. Hence we infer that (1 + p)p

k−2 ≡ 1 + pk−1 (mod pk).

Next we get (1 + pk−1)p − 1 = f1(1 + pk−1) =
∑p
j=1

(
p
j

)
· pj(k−1). We have

νp
((
p
j

)
· pj(k−1)

)
= 1 + j(k − 1) ≥ 1 + (k − 1) = k for j < p, while for j = p

we get νp
((
p
p

)
· pp(k−1)

)
= p(k − 1) ≥ k; note that the latter inequality is

equivalent to k ≥ p
p−1 . Thus we have (1 + pk−1)p ≡ 1 (mod pk). Hence we

get (1 + p)p
k−1 ≡ ((1 + p)p

k−2

)p ≡ (1 + pk−1)p ≡ 1 (mod pk), from which we
conclude that 1 + p ∈ (Z/pkZ)∗ has order pk−1.

ii) b) Let p := 2 and k ≥ 3, and let a := 4. Then we get (1+4)2
k−3−1 = fk−3(1+

4) = 2k−1 +
∑2k−3

j=2

(
2k−3

j

)
·4j . We have νp

((
2k−3

j

)
·4j
)

= (k−3)−ν2(j) + 2j ≥ k
for j ≥ 3, while for j = 2 we get νp

((
2k−3

2

)
·42
)

= (k− 3)− ν2(2) + 4 ≥ k. Hence

we infer that (1 + 4)2
k−3 ≡ 1 + 2k−1 (mod 2k).

Next we get (1 + 2k−1)2 − 1 = f1(1 + 2k−1) = 2k + 22k−2. Thus we have

(1 + 2k−1)2 ≡ 1 (mod 2k). Hence we get (1 + 4)2
k−2 ≡ ((1 + 4)2

k−3

)2 ≡ (1 +
2k−1)2 ≡ 1 (mod 2k), which shows that 1 + 4 ∈ (Z/2kZ)∗ has order 2k−2.

iii) Let p be odd, and let σ := ρk and τ := 1 + p. Then gcd+(|ρk|, |1 + p|) =
gcd+(p − 1, pk−1) = 1 and |ρk| · |1 + p| = (p − 1)pk−1 = |(Z/pkZ)∗| shows that
(Z/pkZ)∗ ∼= 〈ρk〉 × 〈1 + p〉.
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Table 9: Powers of a primitive root modulo 5.

k 1 2 3 4 5 6 7 8 9 10
ρk 2 7 57 182 2057 14557 45807 280182 280182 6139557

−1068 −1068 −32318 −110443 −3626068

Let finally p := 2, let k ≥ 3, and let σ := −1 and τ := 1 + 22. Then τ2
k−3

=
1 + 2k−1 ∈ 〈τ〉 is the unique element of 〈τ〉 of order 2. Hence from 1 + 2k−1 6= σ
we conclude that 〈σ〉 ∩ 〈τ〉 = {1}. Since |σ| · |τ | = 2 · 2k−2 = 2k−1 = |(Z/2kZ)∗|
we infer that (Z/2kZ)∗ ∼= 〈σ〉 × 〈τ〉. Moreover, since (Z/2kZ)∗ has at least two
elements of order 2, this group is not cyclic. ]

Example. For p := 3 and ρ := −1 we get ρk = −1, for k ∈ N. For p := 5 and
ρ := 2 a few powers are shown in Table 9, where we also give the numerically
smallest residue in Z/5kZ if it is negative.

(11.3) Corollary: Gauss. Let n ∈ N. Then (Z/nZ)∗ is cyclic if and only if
n ∈ {1, 2, 4} ∪ {pk, 2pk; p ∈ P odd, k ∈ N}

Proof. Let n = 2a ·
∏r
i=1 p

ai
i ∈ N, where 2 6= pi ∈ P are pairwise distinct,

a ∈ N0 and ai ∈ N, for some r ∈ N0. Then we have (Z/nZ)∗ ∼= (Z/2aZ)∗ ×∏r
i=1(Z/paii Z)∗. Since each group (Z/paii Z)∗ ∼= Cpi−1 × Cpai−1

i
has an element

of order 2, we conclude that (Z/nZ)∗ is not cyclic whenever r ≥ 2.

If a ≥ 3 then (Z/2aZ)∗ ∼= C2 ×C2a−2 is not cyclic, hence (Z/nZ)∗ neither is. If
r = 0, then (Z/2aZ)∗ is cyclic if and only if a ≤ 2.

Let r = 1. If a = 2, then both (Z/pa11 Z)∗ and (Z/2aZ)∗ have an element of order
2, thus (Z/nZ)∗ is not cyclic; if a ≤ 1, then (Z/nZ)∗ ∼= (Z/pa11 Z)∗ is cyclic. ]

12 Quadratic residues

(12.1) Quadratic congruences. We consider the question when the quadratic
congruence X2 ≡ a (mod n), where n ∈ N and a ∈ Z, is solvable. Being
a special case of a polynomial congruence (actually the easiest one next to
the linear case), by the Chinese remainder theorem this question is reduced to
congruences X2 ≡ a (mod pk), where p ∈ P and k ∈ N. The latter can be
treated by a further reduction to the case of congruences X2 ≡ a (mod p), and
subsequent lifting. In order to proceed along these lines, we need a purely group
theoretic lemma first:
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Lemma. Let G = 〈γ〉 ∼= Cn be a cyclic group of even order n ∈ N.

a) We have a surjective group homomorphism q : G→ {±1} : γi 7→ (−1)i;

b) Let Q := {g2 ∈ G; g ∈ G} be the set of squares in G. Then we have
Q = 〈γ2〉 = {g ∈ G; q(g) = 1} ≤ G, the unique subgroup of order n

2 .

c) Let z := γ
n
2 ∈ G be the unique element of order 2. Then for any g ∈ G we

have g
n
2 ∈ 〈z〉, where g ∈ Q if and only if g

n
2 = 1.

Proof. a) Transporting the natural ring homomorphism Z/nZ → Z/2Z with
the group isomorphisms (Z/nZ,+) → G : i 7→ γi and (Z/2Z,+) → {±1} : j 7→
(−1)j yields the group homomorphism q : G→ {±1} : γi 7→ (−1)i.

b) If g ∈ 〈γ2〉, then g = (γ2)i = (γi)2 for some i ∈ Z, hence g ∈ Q. Conversely, if
g = h2 ∈ G, then there is i ∈ Z such that h = γi, hence g = (γi)2 = (γ2)i ∈ 〈γ2〉.
Thus Q = 〈γ2〉, where |γ2| = |γ|

gcd+(2,|γ|) = n
2 ; with uniqueness since G is cyclic.

Moreover, if g ∈ Q then q being a homomorphism implies that q(g) = 1. Con-
versely, if g = γi ∈ G, for some i ∈ Z, from 1 = q(g) = q(γi) = (−1)i we infer
that i is even, hence g ∈ 〈γ2〉 = Q.

c) We have z 6= 1 and z2 = (γ
n
2 )2 = γn = 1 ∈ G, hence z has order 2; with

uniqueness since G is cyclic. Now let g ∈ G. Then (g
n
2 )2 = gn = 1 shows that

g has order dividing 2, hence g ∈ 〈z〉. Moreover, we have g
n
2 = 1 if and only if

g has order dividing n
2 , which holds if and only if g is contained in the unique

subgroup of order n
2 , which equals Q. ]

Let N := G \ Q be the set of non-squares in G. Thus we have Q = {γ2i ∈
G; i ∈ Zn

2
} and N = {γ2i+1 ∈ G; i ∈ Zn

2
} = Qγ, hence G = Q

.
∪ N = Q

.
∪ Qγ

is the partition of G into Q-cosets; in particular we have |Q| = |N | = n
2 .

(12.2) Quadratic congruences modulo prime powers. We consider the
quadratic congruence X2 ≡ a (mod pk), where p ∈ P and k ∈ N and a ∈ Z.
The particular case of a 6≡ 0 (mod p) admits a systematic treatment:

Theorem. Let p ∈ P and k ∈ N, and let a ∈ Z such that p - a.

a) Let p be odd. Then the congruence X2 ≡ a (mod pk) has a solution if and
only if the congruence X2 ≡ a (mod p) has. In this case, there are precisely
two solutions modulo pk, which just differ by sign.

b) Let p = 2, and let l := min{3, k}. Then the congruence X2 ≡ a (mod 2k)
has a solution if and only if a ≡ 1 (mod 2l). In this case, for k ≥ 3 there are
precisely 4 solutions modulo 2k, while for k = 2 there are precisely 2 solutions
modulo 4, and for k = 1 there is a unique solution modulo 2.

Proof. a) If X2 ≡ a (mod pk) has a solution then X2 ≡ a (mod p) also has.
We consider the converse: Let x1 ∈ Z such that x21 ≡ a (mod p); hence there
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are precisely two solutions ±x1 ∈ (Z/pZ)∗. Let f := X2 − a ∈ Z[X], hence we
have f (1) = 2X ∈ Z[X]. Since f (1)(±x1) 6≡ 0 (mod p), by Hensel lifting for any
k ∈ N there are unique ±xk ∈ (Z/pkZ)∗ such that ±xk ≡ ±x1 (mod p) and
(±xk)2 ≡ a (mod pk). (Note that this argument breaks down for p = 2, so that
we have to argue differently in this case.)

b) If X2 ≡ a (mod 2k) has a solution then X2 ≡ a (mod 2l) also has; and if
xl ∈ (Z/2lZ)∗ is a solution, then we get a = x2l = 1 ∈ (Z/2lZ)∗. We consider
the converse: For k ≤ 3, hence l = k, we have (Z/2Z)∗ = {1} and (Z/4Z)∗ =
〈−1〉 ∼= C2 and (Z/8Z)∗ = 〈−1〉×〈5〉 ∼= C2×C2, respectively, where all elements
have order dividing 2, hence are solutions of X2 ≡ 1 (mod 2k). Hence let now
k ≥ 3, thus l = 3, and we have (Z/2kZ)∗ ∼= 〈−1〉 × 〈5〉 ∼= C2 × C2k−2 .

The set of a ∈ (Z/2kZ)∗ such that the congruenxce X2 ≡ a (mod 2k) is solvable
coincides with the set of squares Q ⊆ (Z/2kZ)∗. Considering the cyclic direct

factors of (Z/2kZ)∗ we infer that Q = 〈52〉 ≤ (Z/2kZ)∗ actually is a subgroup,

where |Q| = |52| = 2k−3; note that 52 ≡ 1 (mod 8) shows again that all elements
of Q are congruent to 1 modulo 8. We consider the surjective natural map

ν : Z/2kZ → Z/8Z. Hence we have | ker(ν)| = 2k

8 = 2k−3, implying that there
are precisely 2k−3 elements a ∈ Z/2kZ such that a ≡ 1 (mod 8). Thus the
latter set coincides with Q, entailing that the congruence X2 ≡ a (mod 2k) is
solvable if a ≡ 1 (mod 8).

Finally, for x, y ∈ (Z/2kZ)∗ we have x2 = y2 if and only if (x · y−1)2 = 1, which

holds if and only if x · y−1 ∈ 〈−1〉 × 〈52
k−3

〉 ∼= C2 ×C2. Hence given solvability
the congruence X2 ≡ a (mod 2k) has precisely 4 solutions. ]

Below, we are going to describe the solvability of the congruence X2 ≡ a
(mod p), where p ∈ P is odd and a ∈ Z such that p - a, which is left open
in the above considerations. Before doing so, we present an example; note that
the congruence X2 ≡ 0 (mod p) is always uniquely solvable modulo p:

Example. We consider the quadratic congruence X2 ≡ 453 (mod 1236), actu-
ally posed by Gauss. We have 1236 = 22 ·3·103, hence by the Chinese remainder
theorem this is equivalent to solving the system of quadratic congruences

X2 ≡ 1 (mod 4), X2 ≡ 0 (mod 3), X2 ≡ 41 (mod 103).

Hence this is more general than the case discussed above, but still we may
proceed as follows: The first congruence is equivalent to X ≡ ±1 (mod 4). The
second congruence is equivalent to X ≡ 0 (mod 3), in other words we have
X ≡ ±3 (mod 12). For the third congruence, we observe that 41 ≡ 41 + 103 ≡
144 ≡ 122 (mod 103), hence we infer X ≡ ±12 (mod 103). Now the extended
Euclidean algorithm entails 1 = gcd+(12, 103) = 43 · 12 − 5 · 103, thus we get
X ≡ ±3 · (−5 · 103)± 12 · (43 · 12) ≡ {±297,±321} (mod 1236).
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(12.3) Quadratic residues. Let p ∈ P be odd. Then a ∈ Z such that p - a
is called a quadratic residue, if there is b ∈ Z such that a = b

2 ∈ (Z/pZ)∗,
otherwise a is called a quadratic non-residue; in other words, a is a quadratic
residue if and only if the congruence X2 ≡ a (mod p) is solvable.

Let Qp := {a ∈ (Z/pZ)∗; a ∈ Z quadratic residue} and Np := {a ∈ (Z/pZ)∗; a ∈
Z quadratic non-residue} be the sets of squares and non-squares in (Z/pZ)∗,
respectively. For a ∈ Z such that p - a let the Legendre symbol be defined

as
(
a
p

)
:= 1 if a ∈ Qp, and

(
a
p

)
:= −1 if a ∈ Np; we let

(
a
p

)
:= 0 if p | a.

Note that
(
·
p

)
only depends on residue classes, hence we may also write

(
a
p

)
.

In this sense, recalling that (Z/pZ)∗ is cyclic of even order p − 1, if ρ ∈ Z is a

primitive root modulo p, then
(
·
p

)
coincides with the surjective natural group

homomorphism (Z/pZ)∗ → {±1} : ρi 7→ (−1)i. This entails:

Proposition: Euler criterion. (Legendre symbols are determined in Z/pZ.)

For any a ∈ Z such that p - a we have
(
a
p

)
≡ a

p−1
2 (mod p).

Proof. If
(
a
p

)
= 1, then a

p−1
2 = 1 ∈ (Z/pZ)∗; if

(
a
p

)
= −1, then since −1 ∈

(Z/pZ)∗ is the unique element of order 2, we have a
p−1
2 = −1 ∈ (Z/pZ)∗. ]

Example. For p := 3 we get Q3 = {1} and N3 = {−1}; for p := 5 we get Q5 =
{±1} and N5 = {±2}; for p := 7 we get Q7 = {1, 2, 4} and N7 = {−1,−2,−4}.

(12.4) The quadratic reciprocity law. In order to compute Legendre sym-

bols
(
a
p

)
, by factoring a ∈ Z and using the multiplicatiivity of

(
·
p

)
, it suffices

to be able to determine
(
−1
p

)
and

(
2
p

)
, as well as

(
q
p

)
, where q ∈ P is odd

such that q 6= p; recall that to find
(
a
p

)
we might as well compute

(
b
p

)
for any

b ≡ a (mod p). We now proceed to the famous quadratic reciprocity law, whose

main part is to relate
(
q
p

)
to
(
p
q

)
, that is to compare the quadratic residuosity

properties of distinct odd primes.

Theorem: Quadratic reciprocity law [Gauss, 1796]. Let p ∈ P be odd.

a) Let q ∈ P be odd such that q 6= p. Then we have
(
p
q

)
·
(
q
p

)
= (−1)

p−1
2 ·

q−1
2 .

In other words, if p ≡ 1 (mod 4) or q ≡ 1 (mod 4) then we have
(
q
p

)
=
(
p
q

)
,

while if both p, q ≡ 3 (mod 4) then we have
(
q
p

)
= −

(
p
q

)
.

b) ‘2. Ergänzungssatz’. We have
(

2
p

)
= (−1)

p2−1
8 .
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In other words, we have 2 ∈ Qp if and only if p ≡ ±1 (mod 8).

c) ‘1. Ergänzungssatz’. We have
(
−1
p

)
= (−1)

p−1
2 .

In other words, we have −1 ∈ Qp if and only if p ≡ 1 (mod 4).

Proof. Note first that c) is just the Euler criterion applied to a := −1; alterna-
tively, as a consequence of Artin’s Theorem, the quadratic congruence X2 ≡ −1
(mod p) is solvable if and only if p ≡ 1 (mod 4).

Moreover, for the reformulation of b) note that since (Z/8Z)∗ ∼= 〈−1〉 × 〈5〉 ∼=
C2×C2 we have p2 ≡ 1 (mod 8) for any p, where from (Z/16Z)∗ ∼= 〈−1〉×〈5〉 ∼=
C2 × C4 we conclude that p2 ≡ 1 (mod 16) if and only if p ∈ 〈−1〉 × 〈52〉, that
is p ≡ {±1,±7} (mod 16), in other words p ≡ ±1 (mod 8).

To prove the main assertions a) and b) we proceed in a series of steps: Following
Eisenstein, let Hp := 1 + Z p−1

2
= {1, . . . , p−12 }. Then any a ∈ (Z/pZ)∗ can be

written uniquely as a = εaα, where εa ∈ {±1} and α ∈ Hp.
i) Let a ∈ (Z/pZ)∗, and for i ∈ Hp let ai = εiαi, where εi ∈ {±1} and αi ∈ Hp.
Then we have the Gauss Lemma saying that

(
a
p

)
=
∏
i∈Hp

εi:

We first show that the αi, for i ∈ Hp, are pairwise distinct: Let αi = αj for

i, j ∈ Hp, then we have a2i
2

= α2
i = α2

j = a2j
2 ∈ (Z/pZ)∗, hence i

2
= j

2
, that

is i
2
j
−2

= 1, hence ij
−1

= ±1, that is i = ±j, which finally implies i = j.

Thus we have a
p−1
2 ·
∏
i∈Hp

i =
∏
i∈Hp

ai =
∏
i∈Hp

εiαi =
∏
i∈Hp

εi ·
∏
i∈Hp

αi =∏
i∈Hp

εi ·
∏
i∈Hp

i ∈ (Z/pZ)∗, thus
(
a
p

)
= a

p−1
2 =

∏
i∈Hp

εi. ]

ii) Using the notation introduced above, for a ∈ (Z/pZ)∗ and i ∈ Hp let ai =
εiαi + eip, where ei ∈ Z. Now, if εi = 1, then we have 2ai = 2αi + 2eip,
hence 2ai

p = 2αi

p + 2ei, thus b 2aip c = 2ei is even. If εi = −1, then we have

2ai = −2αi + 2eip, hence 2ai
p = − 2αi

p + 2ei, thus b 2aip c = 2ei − 1 is odd.

In conclusion εi = (−1)b
2ai
p c, thus

(
a
p

)
=
∏
i∈Hp

(−1)b
2ai
p c = (−1)

∑
i∈Hp

b 2ai
p c.

iii) Now let a ∈ Z be odd such that p - a. Then, using
(

4
p

)
=
(

22

p

)
=
(

2
p

)2
= 1,

we get
(

2a
p

)
=
(

2a+2p
p

)
=
(

4· a+p
2

p

)
=
(

4
p

)
·
( a+p

2

p

)
=
( a+p

2

p

)
. This yields(

2a
p

)
= (−1)

∑
i∈Hp

b i(a+p)
p c

= (−1)
∑

i∈Hp
(i+b iap c) = (−1)

∑
i∈Hp

i · (−1)
∑

i∈Hp
b iap c.

The sum formula for arithmetic series yields
∑
i∈Hp

i =
∑ p−1

2
i=1 i =

( p+1
2
2

)
=

(p−1)(p+1)
8 = p2−1

8 , hence we get
(

2a
p

)
= (−1)

p2−1
8 · (−1)

∑
i∈Hp

b iap c.

In particular, for a := 1 we get
(

2
p

)
= (−1)

p2−1
8 · (−1)

∑
i∈Hp

b i
p c = (−1)

p2−1
8 ,

proving b). Thus, from
(

2a
p

)
=
(

2
p

)
·
(
a
p

)
we get

(
a
p

)
= (−1)

∑
i∈Hp

b iap c.
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iv) Let now q ∈ P be odd such that q 6= p. Letting H := Hp ×Hq, we consider
σ := |{[i, j] ∈ H; qi > pj}| and τ := |{[i, j] ∈ H; qi < pj}|. Since p - qi and
q - pj, we have qi 6= pj anyway, and thus σ + τ = |H| = p−1

2 ·
q−1
2 .

For i ∈ Hp we have qi
p ≤

q(p−1)
2p < q

2 , hence b qip c ≤
q−1
2 . Thus for j ∈ Hq

we have qi > pj if and only if j ≤ b qip c, hence we get σ =
∑
i∈Hp
b qip c. By

symmetry, we also have τ =
∑
j∈Hq

bpjq c. This finally entails
(
p
q

)
·
(
q
p

)
=

(−1)
∑

j∈Hq
b pjq c · (−1)

∑
i∈Hp

b qip c = (−1)σ+τ = (−1)
p−1
2 ·

q−1
2 , proving a). ]

The quadratic reciprocity law allows to compute Legendre symbols straightfor-
wardly, and thus to decide the solvability of quadratic congruences with respect
to odd prime moduli quickly; but note that this does not provide the solutions:

Example. We have
(
17
19

)
=
(
19
17

)
=
(

2
17

)
= 1, and

(
21
23

)
=
(

3
23

)
·
(

7
23

)
=

(−1)2 ·
(
23
3

)
·
(
23
7

)
=
(−1

3

)
·
(
2
7

)
=
(−1

3

)
·
(
2
7

)
= (−1) · 1 = −1, as well as(

41
103

)
=
(
103
41

)
=
(
21
41

)
=
(

3
41

)
·
(

7
41

)
=
(
41
3

)
·
(
41
7

)
=
(−1

3

)
·
(−1

7

)
= (−1)·(−1) = 1.

13 Applications

(13.1) Primes in arithmetic progressions. We consider arbitrary moduli
n ∈ N. Then for any prime p ∈ Z we have either p | n or p ∈ (Z/nZ)∗.
Hence, given a ∈ (Z/nZ)∗, we ask ourselves, kind of conversely, whether there
are infinitely many primes p ∈ P such that p = a.

The following refers to the cases n = 4 and n = 3, respectively, where in both
cases the first part is seen straightforwardly, while the second part follows from
the quadratic reciprocity law.

Proposition. a) There are infinitely many p ∈ P such that p ≡ −1 (mod 4).

b) There are infinitely many p ∈ P such that p ≡ 1 (mod 4).

Proof. a) Assume to the contrary that {p1, . . . , pr}, for some r ∈ N, are all the
primes p ∈ P such that p ≡ −1 (mod 4). Then let z := −1 + 4 ·

∏r
i=1 pi ∈ Z,

hence z ≡ −1 (mod 4). But for any q ∈ P such that q | z, by construction we
have q ≡ 1 (mod 4), hence we have z ≡ 1 (mod 4) as well, a contradiction.

b) Assume to the contrary that {p1, . . . , pr}, for some r ∈ N, are all the primes
p ∈ P such that p ≡ 1 (mod 4). Then let z := 1 + 4 ·

∏r
i=1 p

2
i ∈ Z, and let

q ∈ P such that q | z. Then by construction we have q ≡ −1 (mod 4). But
−1 ≡ (2 ·

∏r
i=1 pi)

2 (mod q) shows that q ≡ 1 (mod 4), a contradiction. ]

Proposition. a) There are infinitely many p ∈ P such that p ≡ −1 (mod 3).

b) There are infinitely many p ∈ P such that p ≡ 1 (mod 3).
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Proof. a) Assume to the contrary that {p1, . . . , pr}, for some r ∈ N, are all the
primes p ∈ P such that p ≡ −1 (mod 3). Then let z := −1 + 3 ·

∏r
i=1 pi ∈ Z,

hence z ≡ −1 (mod 3). But for any q ∈ P such that q | z, by construction we
have q ≡ 1 (mod 3), hence we have z ≡ 1 (mod 3) as well, a contradiction.

b) Assume to the contrary that {p1, . . . , pr}, for some r ∈ N, are all the primes
p ∈ P such that p ≡ 1 (mod 3). Then let z := 3 + 4 ·

∏r
i=1 p

2
i ∈ Z, and let

q ∈ P such that q | z. Then by construction we have q ≡ −1 (mod 3), hence(
q
3

)
=
(−1

3

)
= −1. But −3 ≡ (2 ·

∏r
i=1 pi)

2 (mod q) shows that 1 =
(
−3
q

)
=(

−1
q

)
·
(

3
q

)
= (−1)

q−1
2 · (−1)

q−1
2 ·

(
q
3

)
=
(
q
3

)
, a contradiction. ]

The following deep theorem (which is not proved here) provides an affirmative
answer to the question whether there are are infinitely many primes p ∈ P such
that p = a, for some fixed a ∈ (Z/nZ)∗. Actually, the precise answer uses the
prime number function π(x) := |P≤x|, for x ∈ R>0:

Theorem: Dirichlet [1837]. Let n ∈ N and a ∈ (Z/nZ)∗. Then we have

lim
x→∞

|{p ∈ P≤x; p ≡ a (mod n)}|
π(x)

=
1

|(Z/nZ)∗|
.

Hence there are infinitely many primes p ∈ Z such that p ≡ a (mod n). ]

(13.2) Varying prime moduli. We change the point of view, fix a ∈ Z, and
let the modulus p ∈ P, being odd such that p - a, vary. We ask ourselves
whether there are infinitely many odd primes such that a is a quadratic residue
and a quadratic non-residue modulo p, respectively.

Theorem. Let 0 6= a ∈ Z. Then there are infinitely many odd primes p ∈ P
such that p - a and

(
a
p

)
= 1.

Proof. Assume to the contrary that {p1, . . . , pr}, for some r ∈ N0, are all odd

primes p ∈ P such that p - a and
(
a
p

)
= 1. Let b ∈ Z such that gcd+(a, b) = 1

and 2 | ab, chosen large enough such that z :=
(
b ·
∏r
i=1 pi

)2− a > 1; note that
here we need a 6= 0. Then gcd+(a, b ·

∏r
i=1 pi) = 1 entails gcd+(z, ab ·

∏r
i=1 pi) =

1. Let q ∈ P such that q | z, then by construction q is odd such that
(
a
p

)
= −1.

But a ≡ (b ·
∏r
i=1 pi)

2 (mod q) shows that
(
a
q

)
= 1, a contradiction. ]

Theorem. Let a ∈ Z be not a square. Then there are infinitely many odd

primes p ∈ P such that p - a and
(
a
p

)
= −1.



IV Residues 56

Proof. By the multiplicativity of
(
·
p

)
we may assume that a ∈ Z \ {0, 1} is

squarefree. We first consider some exeptional small cases:

i) Let a := −1. Then for an odd prime p ∈ P we have
(
−1
p

)
= −1 if and only

if p ≡ −1 (mod 4), of which we already know that there are infinitely many.

ii) Let a := 2. Then for an odd prime p ∈ P we have
(

2
p

)
= 1 if and only

if p ≡ ±1 (mod 8). Hence assume to the contrary that {3}
.
∪ {p1, . . . , pr}, for

some r ∈ N0, are all the odd primes p ∈ P such that p ≡ ±3 (mod 8). Then
let z := 3 + 8 ·

∏r
i=1 pi ∈ Z, hence in particular z ≡ 3 (mod 8). But for any

q ∈ P such that q | z, by construction we have q ≡ ±1 (mod 8), hence we have
z ≡ ±1 (mod 8) as well, a contradiction.

iii) Let a := −2. Then for an odd prime p ∈ P we have 1 =
(
−2
p

)
=
(
−1
p

)
·
(

2
p

)
if and only if p ≡ 1 (mod 4) and p ≡ ±1 (mod 8), or p ≡ −1 (mod 4) and
p ≡ ±3 (mod 8), that is p ≡ 1 (mod 8) or p ≡ 3 (mod 8).

Hence assume to the contrary that {5}
.
∪ {p1, . . . , pr}, for some r ∈ N0, are all

the odd primes p ∈ P such that p ≡ −1 (mod 8) or p ≡ −3 (mod 8). Then let
z := 5 + 8 ·

∏r
i=1 pi ∈ Z, hence in particular z ≡ −3 (mod 8). But for any q ∈ P

such that q | z, by construction we have q ≡ 1 (mod 8) or q ≡ 3 (mod 8),
hence we have z ≡ 1 (mod 8) or z ≡ 3 (mod 8) as well, a contradiction.

iv) Hence we may now assume that a = (−1)ε · 2e ·
∏s
j=1 qj , where qi ∈ P

are pairwise distinct odd primes, for some s ∈ N, and ε, e ∈ {0, 1}. Assume to
the contrary that {p1, . . . , pr}, for some r ∈ N0, are all the odd primes p ∈ P
such that p - a and

(
a
p

)
= −1. Then we have pi 6= qj for all i ∈ {1, . . . , r}

and j ∈ {1, . . . , s}. Hence, letting x ∈ Z such that x ∈ Nqs , by the Chinese
remainder theorem let z ∈ N such that

z ≡ 1 (mod 8), z ≡ 1 (mod pi) for all i ∈ {1, . . . , r},
z ≡ x (mod qs), z ≡ 1 (mod qj) for all j ∈ {1, . . . , s− 1}.

Letting z =
∏t
k=1 lk, where lk ∈ P and t ∈ N, we have lk 6= 2 and lk 6= pi and

lk 6= qj , for all k ∈ {1, . . . , t} and i ∈ {1, . . . , r} and j ∈ {1, . . . , s}. Hence we

get
∏t
k=1

(
a
lk

)
=
∏t
k=1

(
−1
lk

)ε
·
∏t
k=1

(
2
lk

)e
·
∏t
k=1

∏s
j=1

(
qj
lk

)
.

Since z ≡ 1 (mod 4), and lk ≡ ±1 (mod 4), we infer that lk ≡ −1 (mod 4) for

an even number of k ∈ {1, . . . , t}. Since
(
−1
lk

)
= 1 if and only if lk ≡ 1 (mod 4),

we conclude that
∏t
k=1

(
−1
lk

)
= 1. Similarly, since z ≡ 1 (mod 8), and lk ≡ ±1

(mod 8) or lk ≡ ±3 (mod 8), where (±3)2 ≡ 1 (mod 8), we infer that lk ≡ ±3

(mod 8) for an even number of k ∈ {1, . . . , t}. Since
(

2
lk

)
= 1 if and only if

lk ≡ ±1 (mod 8), we conclude that
∏t
k=1

(
2
lk

)
= 1.

Since
(
qj
lk

)
=
(
lk
qj

)
whenever lk ≡ 1 (mod 4), while

(
qj
lk

)
= ±

(
lk
qj

)
whenever
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lk ≡ −1 (mod 4), which happens for an even number of k ∈ {1, . . . , t}, for fixed

j ∈ {1, . . . , s} we get
∏t
k=1

(
qj
lk

)
=
∏t
k=1

(
lk
qj

)
. Thus in conclusion we have∏t

k=1

(
a
lk

)
=
∏s
j=1

∏t
k=1

(
lk
qj

)
=
∏s
j=1

(
z
qj

)
=
(
x
qs

)
·
∏s−1
j=1

(
z
qj

)
= −1. Hence

there is k ∈ {1, . . . , t} such that
(
a
lk

)
= −1, a contradiction. ]

(13.3) Example: Fermat numbers. Finally, we consider the Fermat num-
bers Fn := 22

n

+ 1 ∈ N, for n ∈ N0, again. The following, due to Lucas, is one
of the few general properties known to hold for prime divisors of Fn:

Lemma. Let n ≥ 2, and p ∈ P such that p | Fn. Then we have 2n+2 | p− 1.

Proof. Note that p is odd. For 2 ∈ (Z/pZ)∗ we have 2
2n

= −1, hence 2
2n+1

= 1.
This implies that 2 ∈ (Z/pZ)∗ has order 2n+1, from which we infer 2n+1 | p−1.

Thus, since n ≥ 2, we have p ≡ 1 (mod 8). Hence we have
(

2
p

)
= 1 and there

is a ∈ (Z/pZ)∗ such that a2 = 2. Hence we have a2
n+2

= (a2)2
n+1

= 2
2n+1

= 1.

Assume that a2
n+1

= 1, then −1 = 2
2n

= (a2)2
n

= a2
n+1

= 1, a contradiction.

Hence we have a2
n+1

6= 1; thus actually necessarily a2
n+1

= −1, but we do not
need that. This implies that a has order 2n+2, which entails 2n+2 | p− 1. ]

Applying this for n ∈ {2, 3, 4} shows that it a fairly weak statement: For n = 2
we have 22+2 = 16, hence we get p = 17 = 24 + 1 = F2. For n = 3 we have
23+2 = 32, hence we get p ∈ P ∩ {32 · k + 1; k ∈ {1, . . . , 8}} = {97, 193, 257},
where F3 = 28 + 1 = 257. For n = 4 we have 24+2 = 64, hence we get
p ∈ P ∩{64 ·k+1; k ∈ {1, . . . , 210}} = {193, 257, . . . , 65537}, a set of cardinality
210, where F4 = 216 + 1 = 65537.

Still, in rare cases, see Table 10, it is helpful to discover small prime divisors of
Fn explicitly, by running through the numbers p := 2n+2 ·k+1 ∈ N, for smallish
k ∈ N, and checking whether p divides Fn; in this case p is a prime. We also
indicate the 2-parts of the numbers p − 1 found, which may indeed exceed
n + 2. Finally, the decomposability or primality of the co-factors remaining
after dividing out the prime divisors found can be checked using the Fermat
decomposability test or the Lucas primality test, respectively, see (14.3).

14 Primality testing

(14.1) Fermat test. Letting 1 6= n ∈ N, we aim to decide algorithmically
whether n is a prime or decomposable, but without actually computing the
factorisation of n. To do so, recall that n is a prime if and only if ϕ(n) = n− 1,
where in this case the group of prime residues (Z/nZ)∗ ∼= Cn−1 is cyclic.

a) Without actually determining ϕ(n) = |(Z/nZ)∗|, we may proceed as follows:
If n is a prime, then Euler’s Theorem implies an−1 = 1, for all a ∈ (Z/nZ)∗.
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Table 10: Prime divisors of Fermat numbers.

n 2n+2 k p ν2(p− 1) co-factor prime?

5 128 5 641 7 yes
6 256 1071 274177 8 yes
9 2048 1184 2424833 16 no

10 4096 11131 45592577 12
1583748 6487031809 14 no

11 8192 39 319489 13
119 974849 13 no

12 16384 7 114689 14
1588 26017793 16
3892 63766529 16 no

Hence we have the Fermat decomposability test, saying that if if there is
a ∈ (Z/nZ)∗ such that an−1 6= 1, then n is decomposable; in this case a is called
a Fermat decomposability witness for n.

But this does not provide a primality test: If n is decomposable, but still an−1 =
1 for some 1 6= a ∈ (Z/nZ)∗, then n is called a Fermat pseudo-prime with
respect to the base a, which is called a Fermat liar for n. If n is a Fermat
pseudo-prime with respect to all bases 1 6= a ∈ (Z/nZ)∗, then n is called
a Carmichael number [Korselt, 1899; Carmichael, 1910]. These are
precisely the decomposable numbers escaping the Fermat decomposability test.

Example. i) We consider 212 + 1 = 4097 = 17 · 241. Then we have 2 ∈
(Z/4097Z)∗, and letting a := 2 we get 212 ≡ −1 (mod 4097), hence 224 ≡ 1
(mod 4097), and 4096 = 170 · 24 + 16 yields 24096 ≡ (224)170 · 216 ≡ 212 · 24 ≡
−16 6≡ 1 (mod 4097). Hence 2 is a Fermat decomposability witness for 4097.

ii) We have 561 = 3·11·17, hence (Z/561Z)∗ ∼= (Z/3Z)∗×(Z/11Z)∗×(Z/17Z)∗ ∼=
C2 × C10 × C16, implies that for all a ∈ (Z/561Z)∗ we have alcm+(2,10,16) = 1,
where lcm+(2, 10, 16) = 80 | 560 = 561 − 1; thus 561 is a Carmichael number.
The Carmichael numbers ≤ 104 are {561, 1105, 1729, 2465, 2821, 6601, 8911}.

b) Hence the question arises, how many Carmichael numbers there are. Indeed,
there are infinitely many of them, where more precisely we have the estimates

n
2
7 ≤ |{k ∈ {1, . . . , n}; k Carmichael number}| ≤ n1−(1+ε)·

ln(ln(ln(n)))
ln(ln(n)) , for n →

∞ and for all ε > 0 [Alford-Granville-Pomerance, 1992; Pomerance-
Selfridge-Wagstaff, 1980].

Still, the set Un := {a ∈ (Z/nZ)∗; an−1 = 1} ≤ (Z/nZ)∗ is a subgroup, where
we have Un = (Z/nZ)∗ if and only if n is either a prime or a Carmichael number.

If Un < (Z/nZ)∗, then by Lagrange’s Theorem we have |Un|
|(Z/nZ)∗| ≤

1
2 , implying
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that the fraction of Fermat liars is at most 1
2 . Hence we have the following

randomised algorithm to decide decomposability:

Given an error bound 0 < ε ≤ 1
2 , for at least d− log2(ε)e randomly chosen

elements of (Z/nZ)∗ we perform the Fermat decomposability test; if a Fermat
decomposability witness is found then ‘decomposable’ is returned, otherwise
‘prime’ (or ‘probably prime or Carmichael’, to be precise) is returned. Thus this
is a Monte-Carlo algorithm insasmuch the answer ‘decomposable’ is correct,
while the answer ‘prime’ is incorrect with an error probability of at most ε.

(14.2) Lucas test. Let still 1 6= n ∈ N. The Lucas primality test [1876]
aims at proving that (Z/nZ)∗ is cyclic of order n− 1, by exhibiting an element
a ∈ (Z/nZ)∗ of order n−1. The latter property is verified, letting p1, . . . , pr ∈ P
be the prime divisors of n − 1 for some r ∈ N0, by checking whether an−1 = 1

and a
n−1
pi 6= 1, for all i ∈ {1, . . . , r}.

If n is a prime, then the tuple [a; p1, . . . , pr] is a called a Lucas primality
certificate for n, where the primitive root a ∈ (Z/nZ)∗ is called a Lucas pri-
mality witness. But to achieve this we need to apply a factorisation algorithm
to n − 1, and to apply the Lucas primality test recursively to verify primality
of the prime factors of n − 1 found. Unfortunately, no ‘fast’ (more precisely,
polynomial) factorisation algorithm is known.

This finally yields a Pratt primality certificate [1975] for n, consisting of a
Lucas primality certificate for n, together with Pratt primality certificates for
the prime factors of n−1; note that the recursion is anchored by the empty Lucas
primality certificate [2; ] for n = 2. In terms of complexity theory of algorithms
a Pratt primality certificate for n is a polynomial certificate for primality of
n, saying that using this primality of n can be verified algorithmically needing
computing time which is polynomial in the input size ln(n). Similarly, providing
a proper divisor of n is a polynomial certificate for decomposability of n.

(14.3) Example: Fermat numbers. We consider the Fermat numbers Fn :=
22

n

+ 1 ∈ N, for n ∈ N0, again. The Fermat decomposability test amounts to

finding a ∈ (Z/FnZ)∗ such that aFn−1 ≡ a2
2n 6≡ 1 (mod Fn), while the Lucas

primality test amounts to finding a ∈ (Z/FnZ)∗ such that a
Fn−1

2 ≡ a2
2n−1 6≡ 1

(mod Fn) and aFn−1 ≡ a22
n

≡ 1 (mod Fn). Actually, we can do better:

Lemma: Pepin’s test [1877]. Let n ≥ 1. Then we have 3 - Fn, and Fn is a

prime if and only if 3
Fn−1

2 ≡ −1 (mod Fn).

Proof. We have Fn ≡ (−1)2
n

+1 ≡ −1 (mod 3), hence 3 ∈ (Z/FnZ)∗. Now let

Fn be a prime; then since Fn ≡ 22
n

+ 1 ≡ 1 (mod 4) we have
(

3
Fn

)
=
(
Fn

3

)
=(−1

3

)
= −1, hence the Euler criterion yields 3

Fn−1
2 ≡ −1 (mod Fn). Conversely,
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let 3
Fn−1

2 ≡ 32
2n−1 ≡ −1 (mod Fn), hence 3Fn−1 ≡ 32

2n ≡ 1 (mod Fn), thus
3 ∈ (Z/FnZ)∗ has order 22

n

= Fn − 1, implying that Fn is a prime. ]

Hence the second part of the above argument shows that, if Fn is a prime then
3 is a Lucas primality witness.

Now the Fermat numbers F1 = 22 +1 = 5, F2 = 24 +1 = 17, F3 = 28 +1 = 257,
F4 = 216 + 1 = 65537 are seen to be primes as follows, letting a := 3: For n = 1

we get 3
F1−1

2 ≡ 32 ≡ 9 ≡ −1 (mod F1); for n = 2 we successively compute

32 ≡ 9 (mod F2) and 34 ≡ 81 ≡ −4 (mod F2) and 3
F2−1

2 ≡ 38 ≡ 42 ≡ −1

(mod F2); similarly, sparing the details, for n = 3 we get 3
F3−1

2 ≡ 3128 ≡ −1

(mod F3); and for n = 4 we get 3
F4−1

2 ≡ 332768 ≡ −1 (mod F4).

To the contrary, for F5 = 232+1 = 4 294 967 297 we get 3
F5−1

2 ≡ 10 324 303 6≡ −1
(mod F5), implying that F5 is not a prime. Indeed, we already know that 641
is a prime divisor of F5, and for the co-factor c := F5

641 = 6 700 417 we have
c− 1 = 27 · 3 · 17449, and 5 turns out to be a Lucae primality witness.

Similarly, for F9 = 264 + 1 we get 3
F9−1

2 6≡ −1 (mod F9), implying that F9 is
not a prime. Indeed, we already know that 2 424 833 is a prime divisor of F9,
and for the co-factor c := F9

2424833 we get 3c−1 6≡ 1 (mod c), implying that c is
not a prime, with Fermat decomposability witness 3. ]

Finally, recall that for n ∈ N0 and a := 2 we have 22
n ≡ −1 (mod Fn), hence

22
n+1 ≡ 1 (mod Fn), showing that 2 ∈ (Z/FnZ)∗ has order 2n+1. Since 2n+1 |

22
n

= Fn − 1, with equality if and only if n ≤ 1, we conclude that 2 is a Lucas
primality witness for F0 and F1, while it is a Fermat liar if Fn is decomposable,
and does not yield any insights if Fn is a prime for n ≥ 2.
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