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0 Quadratic forms

(0.1) Action on polynomial algebras. Let K be a field, let n ∈ N0, and
let K[X ] = K[X1, . . . , Xn] be the polynomial K-algebra in the indeterminates
X := {X1, . . . , Xn}. We have K[X ] =

⊕
d∈N0

K[X ]d as graded K-algebras,
where K[X ]d ≤ K[X ] is the subspace of homogeneous polynomials of degree d.

The general linear group GLn(K) acts naturally (from the right) K-linearly on
the K-vector space Kn. Hence GLn(K) acts K-linearly by pre-composition on
the space of linear forms K[X ]1 ≤ K[X ], and thus by the universal property
of polynomial K-algebras we obtain graded K-algebra isomorphisms on K[X ]:

For A = [aij ]ij ∈ GLn(K) we have (AXj)(x1, . . . , xn) = Xj([x1, . . . , xn] · A) =∑n
i=1 xiaij = (

∑n
i=1 aijXi)(x1, . . . , xn), for x1, . . . , xn ∈ K, saying that AXj =∑n

i=1Xiaij , in other words we have X 7→ X · A. Thus in terms of the K-basis
X of K[X ]1 the K-linear map induced by A is given by Atr ∈ Kn×n. Hence in
order to get an action of GLn(K) we let (fA)(X ) := f(X ·A−1), for f ∈ K[X ];
in particular the K-linear map on K[X ]1 induced by A is given by A−tr ∈ Kn×n.

(0.2) Quadratic forms. LetK be a field such that char(K) 6= 2, and let n ∈ N.
A polynomial q = q(X ) = q(X1, . . . , Xn) :=

∑
1≤i≤j≤n qijXiXj ∈ K[X ]2 is

called an (n-ary) quadratic form; we have dimK(K[X ]2) = n(n+1)
2 . We

may identify q with the associated map Kn → K : x = [x1, . . . , xn] 7→ q(x) =
q(x1, . . . , xn), which with a slight abuse is also called a quadratic form; thus the
map Kn×Kn → K : [x, y]→ 1

2 (q(x+y)−q(x)−q(y)) is a symmetric K-bilinear
form, and we have the name-giving property q(λx) = λ2 · q(x), for λ ∈ K.

Let Kn×n
sym := {A ∈ Kn×n;Atr = A} ≤ Kn×n the K-subspace of symmetric

matrices; we have dimK(Kn×n
sym ) = n(n+1)

2 . The quadratic form q is associated
with the Gram matrix Q = Qq := [q′ij ]ij ∈ Kn×n

sym , where q′ii = qii, and

q′ij = q′ji = 1
2 · qij for i < j. This gives rise to an isomorphism of K-vector

spaces K[X ]2 → Kn×n
sym : q 7→ Qq, such that conversely q(X ) = X ·Qq · X tr.

For A ∈ GLn(K) we get (qA)(X ) = (X · A−1) · Q · (A−tr · X tr), thus we have
QqA = A−1 ·Q · A−tr; recall that applying A amounts to applying base change
of Kn. Quadratic forms q and q′ with associated Gram matrices Q and Q′,
respectively, are called equivalent if there is A ∈ GLn(K) such that qA = q′,
or equivalently Q′ = A−1 ·Q ·A−tr.

Then ∆(q) := det(Qq) ∈ K is called the discriminant of q [Sylvester, 1852],
and rk(q) := rk(Qq) ∈ {0, . . . , n} is called the rank of q. Thus applying A ∈
GLn(K) yields rk(qA) = rk(q) and ∆(qA) = det(A−1 · Q · A−tr) = det(A)−2 ·
det(Q) = det(A)−2 · ∆(q). In particular, the rank is a GLn(K)-invariant of
quadratic forms, while the the discriminant of quadratic forms is invariant with
respect to the special linear group SLn(K).

(0.3) Classification of quadratic forms. Let K be an algebraically closed
field such that char(K) 6= 2, and let n ∈ N. Given a quadratic form q ∈ K[X ]2,
let [q] ⊆ K[X ]2 be its equivalence class with respect to the action of SLn =
SLn(K), rather than GLn = GLn(K). These equivalence classes are as follows:

Theorem. Any n-ary quadratic form is SLn-equivalent to precisely one of:
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i) qn,δ := δX2
n +

∑n−1
i=1 X

2
i , where δ 6= 0; we have rk(qn,δ) = n and ∆(qn,δ) = δ.

ii) qr :=
∑r
i=1X

2
i , where r ∈ {0, . . . , n− 1}; we have rk(qr) = r and ∆(qr) = 0.

Moreover, all the forms qn,δ for δ 6= 0 are GLn-equivalent.

Proof. We show that the Gram matrix Q of any quadratic form q of rank
r := rk(q) is SLn-diagonalizable: By induction we may assume that n ≥ 2
and q 6= 0. Since SLn acts transitively on Kn \ {0}, we may choose a K-
basis of Kn whose first element, v say, is non-isotropic. Since any unitriangular
matrix belongs to SLn, by the standard orthogonalization procedure we may
complement this by a K-basis of the orthogonal complement 〈v〉⊥K ≤ Kn. (So
far the argument works for any field K such that char(K) 6= 2.)

Hence we may assume that q =
∑r
i=1 δiX

2
i , where δi 6= 0. If r < n, letting A :=

diag[ε1, . . . , εr, 1, . . . , 1, (
∏r
i=1 εi)

−1] ∈ SLn, where ε2i = δi for i ∈ {1, . . . , r}, we
get qA =

∑r
i=1 δiε

−2
i X2

i = qr. If r = n, letting A := diag[ε1, . . . , εn−1, ε
−1] ∈

SLn, where ε2i = δi for i ∈ {1, . . . , n − 1}, and ε :=
∏n−1
i=1 εi, we get qA =

δnε
2X2

n+
∑n−1
i=1 δiε

−2
i X2

i = qn,δnε2 . Finally, letting A := diag[1, . . . , 1, ε] ∈ GLn,

where ε2 = δ, we get qn,δA = δε−2X2
n +

∑n−1
i=1 X

2
i = qn,1. ]

We may view the discriminant ∆ as a regular map on the affine variety K[X ]2.
Its fibre associated with δ ∈ K is the hypersurface ∆−1(δ) ⊆ K[X ]2. Since
∆ is SLn-invariant, we conclude that ∆−1(δ) consists of a union of equivalence
classes. More precisely, for δ 6= 0 the fibre ∆−1(δ) = [qn,δ] is a single equivalence

class, while the fibre ∆−1(0) =
∐n−1
r=0 [qr] is a union of equivalence classes, for

n ≥ 2; note that [q0] = {q0} is a singleton set.

Since ∆ is continuous with respect to the Zariski topology, we conclude that the
fibre ∆−1(δ) ⊆ K[X ]2 is closed. This implies that the equivalence class [qn,δ] is
closed for δ 6= 0. But for δ = 0 this is different, where for r ∈ {0, . . . , n− 1} the
closure of [qr] equals [qr] =

∐r
s=0[qs] ⊆ K[X ]2:

For the time being, we are only able to present an argument which is valid for
the case K = C and C[X ]2 carrying the complex metric topology instead of the
Zariski topology, but we will show in (3.2) that it carries over to the Zariski
topology over any algebraically closed field. Now, since SLn(C) acts by home-
omorphisms, [qr] is SLn(C)-invariant as well, hence is a union of equivalence
classes. Since {M ∈ Cn×n; rk(M) ≤ r} ⊆ Cn×n coincides with the set of all
matrices whose

(
(r+ 1)× (r+ 1)

)
-minors all vanish, we conclude that the latter

set is closed. Hence {M ∈ Cn×nsym ; rk(M) ≤ r} ⊆ Cn×nsym is closed as well, in other

words
∐r
s=0[qs] is closed, whence [qr] ⊆

∐r
s=0[qs]. Conversely, for r = 0 we have

[q0] = [q0]. For r ∈ {1, . . . , n−1} and ε ∈ C let qr,ε := εX2
r +
∑r−1
i=1 X

2
i ; in partic-

ular qr,1 = qr. Then we have qr,ε ∈ [qr] for ε 6= 0, and limε→0 qr,ε = qr,0 = qr−1,

which entails [qr−1] ⊆ [qr]. This implies
∐r
s=0[qs] ⊆ [qr], thus equality. ]

Letting K be an arbitrary algebraically closed field such that char(K) 6= 2 again,
in particular we have ∆−1(0) = [qn−1], implying that any SLn-invariant regular
map on ∆−1(0) is constant, hence the equivalence classes contained in ∆−1(0)
cannot be separated by these maps.

This also entails that any SLn-invariant regular map F on K[X ]2 is constant
on the fibres of ∆, that is we have F (q) = f(∆(q)) for some map f : K → K.
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Table 1: Hyperboloids for δ < 0 and δ = 0 and δ > 0.

Moreover, ∆ admits the section s : K → K[X ]2 : δ 7→ qn,δ, where qn,0 := qn−1,
that is s · ∆ = idK. This yields F (s(δ)) = f(∆(s(δ))) = f(δ), thus f = s · F .
Since s is a morphism, f likewise is, implying that F is a polynomial in ∆. ]

Similarly, in the case K = C and C[X ]2 carrying the complex metric topol-
ogy, the above argument shows that any SLn(C)-invariant continuous complex-
valued function on ∆−1(0) is constant; and that any SLn(C)-invariant contin-
uous complex-valued function F on C[X ]2 is constant on the fibres of ∆, which
since s is continuous entails that F is a continuous function of ∆.

(0.4) Binary quadratic forms. In particular, we consider binary forms,
that is the case n = 2, and let X := {X,Y } and V := K[X,Y ]2. We consider the
K-bases {X2, 2XY, Y 2} ⊆ V and {X2+Y 2, 2XY,X2−Y 2} ⊆ V. Letting A,B,C
and U,W, V be the the associated coordinate functions, using the base change

matrix M :=

1 0 1
0 1 0
1 0 −1

 we get [A,B,C] = [U,W, V ] ·M = [U +V,W,U −V ]

and [U,W, V ] = [A,B,C] ·M−1 = [A+C
2 , B, A−C2 ]. This yields identifications of

V with K3, with coordinate algebra K[V] = K[A,B,C] = K[U,W, V ].

Let q := aX2 + 2bXY + cY 2 ∈ V, having Gram matrix Q =

[
a b
b c

]
∈ K2×2

sym,

and thus ∆(q) = det(Q) = ac − b2 ∈ K [Lagrange; Gauß, 1801]. Thus as a
regular map on V we get ∆ = AC −B2 = U2 − V 2 −W 2 ∈ K[V].

For δ ∈ K the fibre ∆−1(δ) ⊆ V is, with respect to the above identifications,
given as {[a, b, c] ∈ K3; ac − b2 = δ} and {[u,w, v] ∈ K3; v2 + w2 = u2 − δ},
respectively. The Jacobian [∂∆

∂U ,
∂∆
∂W , ∂∆

∂V ] = 2 · [U,−W,−V ] shows that ∆−1(δ)
is smooth for δ 6= 0, while for δ = 0 we get the unique singular point q0 ∈ ∆−1(0).

Geometrically, letting K = C, for δ ∈ R considering ∆−1(δ) ∩ R3 in the second
picture, we get a single-shell hyperboloid for δ < 0, a double-shell hy-
perboloid for δ > 0, and a cone for δ = 0; see Table 1, where the u-axis is
the vertical one. In the ‘degenerate’ case δ = 0, the cone consists of two SL2-
equivalence classes, namely [q0] = {q0} and [q1], where q0 = 0 and q1 = X2.
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1 Algebraic groups

(1.1) Algebraic groups. a) Let K be an algebraically closed field. A K-
variety G endowed with a group structure, such that the multiplication map
µ = µG : G×G→ G : [x, y] 7→ xy and the inversion map ι = ιG : G→ G : x 7→
x−1 are morphisms of varieties, is called an algebraic group over K. If G is
an affine variety, then G is called an affine algebraic group.

Note that, since the Zariski topology on G×G is finer than the product topol-
ogy of the Zariski topologies, multiplication is not necessarily continuous with
respect to the product topology, so that G is not necessarily a topological group.

If H is an algebraic group, then a morphism ϕ : G→ H of varieties which also
is a group homomorphism is called a homomorphism of algebraic groups. If ϕ
additionally is an isomorphism of varieties, then it is called an isomorphism of
algebraic groups; note that here bijectivity of ϕ is necessary but not sufficient.

For example, we have the homomorphisms of algebraic groups ε = εG : {1G} →
G : 1G 7→ 1G and ν = νG : G→ {1G} : g 7→ 1G.

b) The group laws of associativity, for the identity and for the properties of
inverses can be translated into commutative diagrams of morphisms of varieties.
Hence for affine algebraic groups these laws can be equivalently reformulated in
terms of coordinate algebras and comorphisms as follows:

i) Associativity: For x, y, z ∈ G we have (xy)z = x(yz).

G×G×G
µ×id //

id×µ
��

G×G

µ

��
G×G

µ
// G

K[G]⊗K K[G]⊗K K[G] K[G]⊗K K[G]
µ∗⊗id∗oo

K[G]⊗K K[G]

id∗⊗µ∗
OO

K[G]
µ∗

oo

µ∗

OO

ii) Identity: For x ∈ G we have x · 1G = x = 1G · x.

G
εν×id //

id×εν
��

id

%%

G×G

µ

��
G×G

µ
// G

K[G] K[G]⊗K K[G]
(εν)∗⊗id∗oo

K[G]⊗K K[G]

id∗⊗(εν)∗

OO

K[G]
µ∗

oo

µ∗

OO
id∗

hh

iii) Inversion: For x ∈ G we have x · x−1 = 1G = x−1 · x.

G
ι×id //

id×ι
��

εν

%%

G×G

µ

��
G×G

µ
// G

K[G] K[G]⊗K K[G]
ι∗⊗id∗oo

K[G]⊗K K[G]

id∗⊗ι∗
OO

K[G]
µ∗

oo

µ∗

OO
(εν)∗

hh

(1.2) Example: Additive and multiplicative groups. a) Let n ∈ N0.
Then Kn is an affine algebraic group, having multiplication µ : Kn × Kn →
Kn : [x, y] 7→ x + y, inversion ι : Kn → Kn : x 7→ −x, and identity element
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ε : {0} → Kn; hence Kn is irreducible of dimension n. For n = 1, the additive
group Ga := K is an irreducible affine algebraic group of dimension 1.

Going over to the coordinate algebra K[X ], where X = {X1, . . . , Xn}, yields
µ∗ : K[X ] → K[X ] ⊗K K[X ] : Xi 7→ (Xi ⊗ 1) + (1 ⊗ Xi), and ι∗ : K[X ] →
K[X ] : Xi 7→ −Xi, as well as ε∗ : K[X ] → K : Xi 7→ 0, where K is the coor-
dinate algebra associated with {0}.
b) The multiplicative group Gm := K \ {0} coincides with the principal
open subset KX := {x ∈ K;X(x) 6= 0} ⊆ K, and thus is an irreducible affine
variety of dimension 1. The associated coordinate algebra is given as K[Gm] =
K[X]X = K[X,X−1] := K[X,T ]/〈XT − 1〉; it can be seen as the localisation of
the coordinate algebra K[X] of K at the multiplicatively closed set generated
by X, where 〈X〉EK[X] is the maximal ideal belonging to the point 0 ∈ K.

Then Gm becomes an affine algebraic group with respect to multiplication
µ : Gm ×Gm → Gm : [x, y] 7→ xy, inversion ι : Gm → Gm : x 7→ x−1, and iden-
tity element ε : {1} → Gm. Going over to the coordinate algebra K[X]X yields
µ∗ : K[X]X → K[X]X ⊗K K[X]X : X 7→ X ⊗X and ι∗ : K[X]X → K[X]X : X 7→
X−1, as well as ε∗ : K[X]X → K : X 7→ 1. In particular this shows that inversion
indeed is a morphism.

For n ∈ Z the map ϕn : Gm → Gm : x 7→ xn, thus ϕ∗n : K[X]X → K[X]X : X 7→
Xn, is a homomorphism of algebraic groups. If char(K) = p > 0 and q = pf ,
for some f ∈ N, then the Frobenius morphism ϕq is a group isomorphism,
but since ϕ∗q is not surjective, ϕq is not an isomorphism of algebraic groups.

(It can be shown that Ga and Gm are not isomorphic as algebraic groups, and
that they are the only irreducible affine algebraic groups of dimension 1.)

(1.3) General and special linear groups. a) Let n ∈ N0. We consider the
affine variety Kn×n, with coordinate algebra K[X ], where X := {X11, . . . , Xnn}.
Let det = detn :=

∑
σ∈Sn

(
sgn(σ) ·

∏n
i=1Xi,iσ

)
∈ K[X ] be the n-th determi-

nant polynomial; in particular we have det1 = X and det0 = 1.

The principal open subset GLn = GLn(K) := (Kn×n)det = {A = [aij ]ij ∈
Kn×n; det(A) = detn(a11, a12, . . . , ann) 6= 0} ⊆ Kn×n is called the general
linear group; in particular we have GL1 = Gm. Its coordinate algebra is
K[GLn] = K[X ]det = K[X ,det−1

n ], and together with its natural abstract group
structure GLn is an affine algebraic group:

Multiplication µ : GLn×GLn → GLn : [[aij ]ij , [bjk]jk] 7→ [
∑n
j=1 aijbjk]ik yields

µ∗ : K[X ]det → K[X ]det ⊗K K[X ]det : Xik 7→
∑n
j=1Xij ⊗ Xjk. Moreover, using

the adjoint matrix, inversion can be written as ι : GLn → GLn : A 7→ A−1 =
det(A)−1 · adj(A), where adj(A) := [(−1)i+j · det([akl]k 6=j,l 6=i)]ij ∈ Kn×n and
we let adj([a11]) = [1]. This yields ι∗ : K[X ]det → K[X ]det : Xij 7→ (−1)i+j ·
det−1

n (X ) · detn−1({Xkl; k 6= j, l 6= i}), in particular showing that inversion is a
morphism. Finally, the identitiy element ε : {En} → GLn yields ε∗ : K[X ]det →
K : Xij 7→ δij , the Kronecker δ-function. ]

Since Kn×n is irreducible such that dim(Kn×n) = n2, these statements also
hold for GLn. The map ϕdet : GLn → Gm : A 7→ det(A) is a homomorphism of
algebraic groups, such that ϕ∗det : K[X]X → K[X ]det : X 7→ det.
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b) Similarly, SLn = SLn(K) := V(detn−1) = {A = [aij ]ij ∈ Kn×n; det(A) =
detn(a11, a12, . . . , ann) = 1} ⊆ Kn×n is called the special linear group.

Proposition. detn−a ∈ K[X ] is irreducible, for any n ∈ N and a ∈ K.

Proof. We first consider the case a = 0, and show by induction that detn ∈
K[X ] is irreducible, which holds for n = 1. For n ≥ 2 assume to the contrary
that detn is reducible. Expansion with respect to the n-th row yields detn =
detn−1 ·Xnn + δn, where δn :=

∑n−1
i=1 (−1)n−i · detn−1({Xkl; k 6= n, l 6= i}) ·Xni.

Since degXnn(detn) = 1, and by induction detn−1 ∈ K[{Xkl; k 6= n, l 6= n}] ⊆
K[X ] is irreducible, this implies that detn−1 divides δn. By specifying Xnj 7→ 0,
for j ∈ {1, . . . , n − 1} \ {i}, this yields that detn−1 divides detn−1({Xkl; k 6=
n, l 6= i}), for i ∈ {1, . . . , n− 1}, which is a contradiction.

Now let a 6= 0, and assume to the contrary that detn−a is reducible. Then we
conclude similarly that detn−1 divides δn− a, which by specifying Xni 7→ 0, for
i ∈ {1, . . . , n− 1}, is a contradiction. ]

This implies that 〈detn−1〉EK[X ] is prime, for n ∈ N0, and thus the coordinate
algebra of SLn is K[SLn] ∼= K[X ]/〈detn−1〉; in particular K[SLn] is a domain,
or equivalently SLn is irreducible. Moreover, since the prime ideal 〈detn−1〉
has height 1, we conclude that dim(SLn) = dim(Kn×n)− 1 = n2 − 1.

Since SLn ⊆ GLn, we conclude that SLn ≤ GLn is a closed subgroup; alterna-
tively, this also follows from SLn = ker(ϕdet) ≤ GLn. The associated inclusion
morphism has comorphism K[X ]det → K[X ]/〈detn−1〉 : Xij 7→ Xij , det−1

n 7→ 1.

(1.4) Linear algebraic groups. Let n ∈ N0. Any closed subgroup of GLn
is an affine variety, such that the structure morphisms carry over from GLn,
thus is an affine algebraic group in its own right, being called a linear algebraic
group. (We will show in (2.7) that any affine algebraic group is isomorphic as
algebraic groups to a linear algebraic group, so that these notions coincide.)

Example. We have the following linear algebraic groups, where n ∈ N0:

i) The scalar group Zn := {a·En ∈ GLn; a 6= 0} ∼= Gm, where Zn = Z(GLn);
and the group of diagonal matrices or torus Tn := {[aij ]ij ∈ GLn; aij =
0 for i 6= j} ∼= (Gm)n, the n-fold direct product of Gm with itself.

ii) The group of upper unitriangular matrices or unipotent group Un :=
{[aij ]ij ∈ GLn; aij = 0 for i > j, aii = 1}; and the group of upper triangular
matrices or Borel group Bn := {[aij ]ij ∈ GLn; aij = 0 for i > j}, where
Bn = NGLn(Un) and Bn

∼= Tn n Un as abstract groups (at least).

In particular, we have U2 :=
{[1 x

0 1

]
∈ GL2;x ∈ K

}
, with coordinate algebra

K[X11, X12, X21, X22]/〈X11−1, X22−1, X21〉 ∼= K[X12]. Thus the map ϕ : Ga →

U2 : x 7→
[
1 x
0 1

]
, which has comorphism ϕ∗ : K[X12]→ K[X] : X12 7→ X, is an

isomorphism of algebraic groups.

iii) The group of permutation matrices or Weyl group Wn ≤ GLn, where as
abstract groups Wn

∼= Sn is isomorphic to the symmetric group on n letters;



7

and the group Nn ≤ GLn of monomial matrices, where Nn = NGLn(Tn) and
Nn
∼= Wn n Tn as abstract groups (at least).

In particular, since by Cayley’s Theorem any finite group is isomorphic to a sub-
group of a finite symmetric group, and thus to a group of permutation matrices,
any finite group can be considered as a linear algebraic group.

2 Basic properties

(2.1) Theorem. a) Let G be an affine algebraic group. Then there is a unique
irreducible component G◦ of G containing 1G. The identity component
G◦ E G is a closed normal subgroup of finite index, being contained in any
closed subgroup of finite index, and containing any irreducible closed subgroup.

b) The finite set G◦\G := {G◦g; g ∈ G} of (right) cosets of G◦ in G coincides
with the irreducible components of G, which in turn coincide with the connected
components of G. In particular, G is equidimensional such that dim(G) =
dim(G◦), and G is irreducible if and only if it is connected; in this case the
affine algebraic group G is called connected.

Proof. a) Let first V,W ⊆ G be irreducible components such that 1G ∈ V ∩W .
Multiplication µ : G×G→ G yields that VW = µ(V ×W ) ⊆ G is irreducible,
hence VW ⊆ G is irreducible as well. Since both V ⊆ VW and W ⊆ VW , we
conclude that V = VW = W . This shows that G◦ is well-defined.

In particular, we have G◦G◦ = G◦. Since inversion ι : G → G is an automor-
phism of varieties, (G◦)−1 = ι(G◦) ⊆ G is an irreducible component containing
1G, implying that (G◦)−1 = G◦. Thus G◦ ≤ G is a subgroup. For any g ∈ G
conjugation κg : G → G : x 7→ xg := g−1xg is an automorphism of varieties,
hence (G◦)g = κg(G

◦) ⊆ G is an irreducible component containing 1G, thus
(G◦)g = G◦, implying that G◦ E G is normal. This proves the first half of a).

b) For any g ∈ G right translation ρg : G→ G : x 7→ xg is an automorphism of
varieties, hence G◦g = ρg(G

◦) ⊆ G is an irreducible component, in particular
is connected. Since G is Noetherian, G◦\G is a finite set; in particular G◦

has finite index in G. From G =
∐
g∈G◦\G G◦g we conclude that all the sets

G◦g ⊆ G are open and closed, hence are the connected components of G.

If V ⊆ G is an irreducible component, then from V =
∐
g∈G◦\G(V ∩G◦g) we

conclude that V = V ∩G◦g, hence V = G◦g, for some g ∈ G. This proves b).

a) (cont.) Let H ≤ G be closed of finite index. Hence G =
∐
g∈H\G Hg is a

finite union of open and closed subsets. Thus we have G◦ =
∐
g∈H\G(G◦∩Hg),

and since 1G ∈ G◦ ∩H this implies G◦ = G◦ ∩H, hence G◦ ≤ H.

Let H ≤ G be closed and irreducible. Then H∩G◦EH has finite index, hence
H = H◦ ≤ H ∩G◦, implying H ≤ G◦. This proves the second half of a). ]

Example. Let K := C and J :=

[
0 1
1 0

]
. Then O2 := {A ∈ GL2;AJAtr = J}

be the 2-dimensional orthogonal group; hence O2 ≤ GL2 is closed. For A ∈
O2 we have det(A)2 = 1, hence det : O2 → {±1} is a surjective homomorphism
of algebraic groups; note that J ∈ O2 such that det(J) = −1. Thus its kernel
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SO2 := O2 ∩SL2 EO2 is a closed normal subgroup of index 2, being called the
2-dimensional special orthogonal group; in particular O2 is not conntected.

Letting A =

[
a b
c d

]
∈ GL2, from JAtrJ = A−1 = 1

det(A) · adj(A) we get[
d b
c a

]
= 1

ad−bc ·
[
d −b
−c a

]
. Hence we have SO2 = {diag[a, a−1] ∈ GL2; a 6=

0} ∼= Gm as algebraic groups; in particular SO2 is conntected. Thus we have
O◦2 = SO2 and O2 = SO2

.
∪ SO2 · J . ]

(2.2) Lemma. Let G be an affine algebraic group.
a) Let ∅ 6= V ⊆ G be open and W ⊆ G be dense. Then VW = G = WV .
b) Let H ≤ G be a subgroup. Then H ≤ G is a subgroup as well. If moreover
H contains a non-empty open subset of H, then we have H = H.

Proof. a) Recall that a dense subset of a topological space intersects non-
trivially with any non-empty open subset. Now let g ∈ G. Then V −1g ⊆ G
and gV −1 ⊆ G are open as well. Hence we have V −1g ∩W 6= ∅, implying that
there is v−1g = w ∈ V −1g ∩W , for some v ∈ V and w ∈ W , thus g = vw.
Similarly, we have gV −1∩W 6= ∅, implying that there is gv−1 = w ∈ gV −1∩W ,
for some v ∈ V and w ∈W , thus g = wv.

b) We have H
−1

= H−1 = H. Moreover, for any h ∈ H we have Hh =
Hh = H, implying HH ⊆ H. Thus for any g ∈ H we have gH ⊆ H, implying
gH = gH ⊆ H, thus HH ⊆ H. This shows that H ≤ G is a closed subgroup.

Moreover, if ∅ 6= U ⊆ H is open such that U ⊆ H, thenH =
⋃
{Uh;h ∈ H} ⊆ H

is open and dense, thus H = HH = H. ]

Recall that any constructible subset of an affine variety contains a dense open
subset of its closure, and that the image of any morphism is constructible.

(2.3) Theorem. Let ϕ : G→ H be a homomorphism of affine algebraic groups.
a) Then the kernel ker(ϕ) E G and the image ϕ(G) ≤ H are closed subgroups,
and we have the dimension formula dim(G) = dim(ker(ϕ)) + dim(ϕ(G)).
b) We have ϕ(G◦) = ϕ(G)◦.

Proof. a) Since {1H} ⊆ H is closed, ker(ϕ) = ϕ−1({1H}) ⊆ G is closed as
well. Moreover, since ϕ is a morphism of varieties, ϕ(G) fulfills the assumptions
of (2.2)b). Hence ϕ(G) ≤ H is closed. This proves the first half of a).

b) Since ϕ(G) ≤ H is closed, it is an affine algebraic group. Since ϕ(G◦) ≤
ϕ(G) is closed and irreducible, we have ϕ(G◦) ≤ ϕ(G)◦. Conversely, since
G◦ ≤ G is a subgroup of finite index, ϕ(G◦) ≤ ϕ(G) is a subgroup of finite
index as well, implying ϕ(G)◦ ≤ ϕ(G◦). This proves b).

a) (cont.) In order to proceed towards the dimension formula, since ϕ(G) ≤ H
is closed, we may assume that ϕ is surjective. Hence we have the restriction
ϕ0 := ϕ|G◦ : G◦ → H◦, which is a surjective morphism between irreducible
varieties. The fibres of ϕ0 are the cosets of ker(ϕ0) in G◦, thus are all iso-
morphic to ker(ϕ0) as varieties. Hence the dimension formula for morphisms
yields dim(G◦) = dim(ker(ϕ0)) + dim(H◦). Moreover, ker(ϕ0) = ker(ϕ) ∩
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G◦ E ker(ϕ) has finite index, hence we have ker(ϕ)◦ ≤ ker(ϕ0), implying that
dim(ker(ϕ)◦) = dim(ker(ϕ0)) = dim(ker(ϕ)). Since dim(G◦) = dim(G) and
dim(H◦) = dim(H), this proves the second half of a). ]

(2.4) Action on varieties. a) Let G be an affine algebraic group, and let
V 6= ∅ be a variety. A (right) group action α : V ×G → V : [x, g] 7→ xg, such
that α is a morphism, is called a morphical or regular action, and V is called
a G-variety. If G acts morphically on W as well, then a morphism ϕ : V →W
is called G-equivariant if ϕ(xg) = ϕ(x)g, for x ∈ V and g ∈ G.

For any g ∈ G we have the automorphism of varieties αg : V → V : x 7→ xg. If
V is affine, then we get the associated automorphism of K-algebras α∗g : K[V ]→
K[V ] : f 7→ (x 7→ f(xg)), also called the induced translation of functions.
This gives rise to the associated representation of G on K[V ] defined as α∨ : G→
AutK(K[V ]) : g 7→ α∨g := α∗g−1 = (α∗g)

−1.

For any x ∈ V we have the orbit morphism αx : G→ V : g 7→ xg, whose image
xG = αx(G) ⊆ V is called the associated G-orbit. If G acts transitively, that
is xG = V for some x ∈ V , then V is called homogeneous.

Example. The affine algebraic group G acts morphically on itself by right
translation ρ = µ : G ×G → G : [x, g] 7→ xg, as well as by left translation
λ : G×G→ G : [x, g] 7→ g−1x, where G is homogeneous for either action.

Moreover, G acts morphically on itself by conjugation or inner automor-
phisms κ : G×G→ G : [x, g] 7→ xg := g−1xg; note that κg = ρgλg = λgρg for
g ∈ G. For x ∈ G the orbit xG ⊆ G is called the associated conjugacy class.

(2.5) Stabilisers and fixed points. a) Let G be an affine algebraic group,
let V be a G-variety, let U ⊆ V be a subset, and let W ⊆ V be closed.

Then the transporter TranG(U,W ) := {g ∈ G;Ug ⊆ W} =
⋂
x∈U α

−1
x (W ) ⊆

G is a closed subset. Moreover, the normaliser NG(W ) := {g ∈ G;Wg =
W} = TranG(W,W ) ∩ TranG(W,W )−1 ≤ G is a closed subgroup.

In particular, for any x ∈ V the isotropy group or centraliser or stabiliser
Gx = CG(x) = StabG(x) := {g ∈ G;xg = x} = TranG({x}, {x}) ≤ G is a
closed subgroup, hence CG(U) :=

⋂
x∈U Gx ≤ G is a closed subgroup as well.

b) For any g ∈ G the set of fixed points V g = FixV (g) := {x ∈ V ;xg = x} ⊆
V is closed, implying that V G = FixV (G) :=

⋂
g∈G V g ⊆ V is closed as well:

Since V is a variety, the diagonal ∆(V ) := {[x, x] ∈ V × V ;x ∈ V } ⊆ V × V is
closed; note that this is clear anyway if V is affine. Hence using the graph of αg,
that is the morphism γg : V → V × V : x 7→ [x, xg], we infer that γ−1

g (∆(V )) =
V g ⊆ V is closed as well. ]

c) Each irreducible component of W ⊆ V is G◦-invariant; in particular, if V is
finite then G◦ acts trivially:

The group G, acting by automorphisms of varieties, permutes the finitely many
irreducible components of V , hence NG(W ) ≤ G is a closed subgroup of finite
index, thus contains G◦. ]
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Example. For the right and left translation actions of G on itself, for x ∈ G
the associated isotropy groups are trivial, and for g ∈ G \ {1G} the associated
fixed point sets are empty.

For the conjugation action, the isotropy group of x ∈ G is given as CG(x) =
{g ∈ G; g−1xg = x} = {g ∈ G;xg = gx}, which hence is a closed subgroup of G.
Similarly, for g ∈ G we have FixG(g) = {x ∈ G; g−1xg = x} = {x ∈ G;xg =
gx} = CG(g). Thus the center Z(G) := CG(G) =

⋂
x∈G CG(x) = {g ∈ G;xg =

gx for all x ∈ G} = {x ∈ G;xg = gx for all g ∈ G} =
⋂
g∈G FixG(g) =

FixG(G) is a closed subgroup of G as well.

If H ≤ G is closed, then both CG(H) ≤ G are NG(H) ≤ G are closed.

(2.6) Proposition. Let G be an affine algebraic group acting morphically via
α on an affine variety V , and let U ≤ K[V ] be a finitely generated K-subspace.
a) Then there is a finitely generated G-invariant K-subspace of K[V ] encom-
passing U ; that is the G-action is locally finite.
b) The K-subspace U is G-invariant if and only if α∗(U) ≤ U ⊗K K[G].

Proof. a) Since G acts by K-linear maps on K[V ], we may assume that U =
〈f〉K, for some 0 6= f ∈ K[V ]. Hence we have α∗(f) =

∑r
i=1 fi ⊗ gi ∈ K[V ] ⊗K

K[G], where r ∈ N and fi ∈ K[V ] and gi ∈ K[G]. For g ∈ G and x ∈ V
we have (α∗g(f))(x) = f(αg(x)) = f(xg) = f(α([x, g])) = (α∗(f))([x, g]) =∑r
i=1 fi(x)gi(g), which implies that α∗g(f) =

∑r
i=1 fi · gi(g) ∈ K[V ].

Hence we conclude that 〈α∗g(f); g ∈ G〉K ≤ 〈f1, . . . , fr〉K ≤ K[V ] is a finitely
generated G-invariant K-subspace which contains f = α∗1(f). Note that the
latter is the smallest K-subspace of K[V ] having these properties, thus it is
called the G-invariant subspace generated by f .

b) If α∗(U) ≤ U⊗KK[G] holds, then the above computation shows that α∗g(U) ≤
U , for g ∈ G, that is U is G-invariant.

Conversely, let U ≤ K[V ] be G-invariant. Then let {f1, . . . , fs, fs+1, . . .} ⊆ K[V ]
be a K-basis, where {f1, . . . , fs} ⊆ U is a K-basis and s := dimK(U) ∈ N0. For
f ∈ U we have α∗(f) =

∑r
i=1 fi ⊗ gi, where s ≤ r ∈ N0 and gi ∈ K[G].

For g ∈ G this yields α∗g(f) =
∑r
i=1 fi · gi(g). Since α∗g(f) ∈ U , from K-

linear independence we infer that gi(g) = 0 for i ≥ s + 1. This being true
for all g ∈ G, we deduce that gi = 0 ∈ K[G] for i ≥ s + 1. Thus we have
α∗(f) =

∑s
i=1 fi ⊗ gi ∈ U ⊗K K[G]. ]

(2.7) Theorem: Linearisation of actions. Let G be an affine algebraic
group, and let V be an affine G-variety. Then there is a closed embedding
ϕ : V → Kn, for some n ∈ N0, and a homomorphism of algebraic groups δ : G→
GLn, such that we have G-equivariance ϕ(xg) = ϕ(x)δ(g), for x ∈ V and g ∈ G.

Proof. Let {f1, . . . , fn} ⊆ K[V ], where n ∈ N0, be a K-linear independent
K-algebra generating set such that additionally, by (2.6), the K-subspace U :=
〈f1, . . . , fn〉K ≤ K[V ] is G-invariant. Letting α be the action morphism, we have
α∗(fi) =

∑n
j=1 fj ⊗ gji ∈ K[V ] ⊗K K[G], where the gij ∈ K[G] are uniquely

defined. Thus we get α∗g(fi) =
∑n
j=1 fj · gji(g) ∈ K[G], for g ∈ G. Recall

that this yields a left G-action on U , that is we have α∗hg(f) = α∗h(α∗g(f)) for
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g, h ∈ G and f ∈ U . Thus in terms of matrices we have [gkj(h)]kj · [gji(g)]ji =
[gki(hg)]ki. Hence we get a morphism of varieties δ : G → GLn : g 7→ [gji(g)]ji
with comorphism K[GLn] → K[G] : Xji 7→ gji, such that δ(g)δ(h) = δ(gh).
Thus δ is a homomorphism of algebraic groups.

Next, Let U∨ := HomK(U,K) be the dual K-space of U , and let {λ1, . . . , λn} ⊆
U∨ be the K-basis dual to the K-basis {f1, . . . , fn} ⊆ U , that is λj(fi) = δij
for i, j ∈ {1, . . . , n}. In other words, we may view the evaluation map f•i at
fi as coordinate functions on U∨, for i ∈ {1, . . . , n}, hence we have K[U∨] =
K[f•1 , . . . , f

•
n]. Moreover, U∨ carries a (right) G-action such that g ∈ G maps

λ ∈ U∨ to λg : f 7→ λ(α∗g(f)). Hence, with respect to the above K-basis of U∨,
this action is given by δ.

Now let ϕ : V → U∨ : x 7→ ι∗x, where ι∗x : f 7→ f(x) is the comorphism associated
with ιx : {x} → V . Then ϕ is a closed embedding: For i ∈ {1, . . . , n} and x ∈ V
we have (ϕ∗(f•i ))(x) = f•i (ϕ(x)) = f•i (ι∗x) = ι∗x(fi) = fi(x), hence ϕ∗(f•i ) = fi ∈
K[V ], showing that ϕ is a morphism; moreover, since {f1, . . . , fn} ⊆ K[V ] is a
K-algebra generating set, from ϕ∗ : K[U∨] → K[V ] : f•i → fi we conclude that
ϕ is a surjective homomorphism of K-algebras. Finally, for g ∈ G and f ∈ U
we have ϕ(xg)(f) = ι∗xg(f) = f(xg) = (α∗g(f))(x) = ι∗x(α∗g(f)) = ϕ(x)(α∗g(f)) =
ϕ(x)g(f), hence ϕ(xg) = ϕ(x)g ∈ U∨, that is ϕ is G-equivariant. ]

Corollary: Linearisation of groups. Any affine algebraic group G is iso-
morphic as an algebraic group to a closed subgroup of GLn, for some n ∈ N0.

Proof. We consider the right translation action ρ = µ : G ×G → G, and let
{f1, . . . , fn} ⊆ K[G] with associated map δ : G → GLn : g 7→ [gji(g)]ji be as
above. It remains to be shown that δ is a closed embedding:

Since fi(g) = fi(1G · g) = (ρ∗g(fi))(1G) =
∑n
j=1 fj(1G) · gji(g), for g ∈ G, we

get fi =
∑n
j=1 fj(1G) · gji ∈ K[G], implying that {gji; i, j ∈ {1, . . . , n}} ⊆ K[G]

is a K-algebra generating set, thus δ∗ : K[GLn]→ K[G] is surjective. ]

3 Orbits

(3.1) Theorem: Closed orbit lemma. a) Let G be an affine algebraic group,
let V be a G-variety, and let O ⊆ V be a G-orbit. Then O ⊆ V is G-invariant,
O ⊆ O is open, and if O 6= O then dim(O \O) < dim(O).
b) For G-orbits O,O′ ⊆ V such that O′ ⊆ O we write O′ � O. Then the orbit
closure relation � is a partial order on the set of G-orbits in V . Moreover,
there are �-minimal G-orbits, all of which are closed. In particular, any G-orbit
contains a closed G-orbit in its closure.

Proof. a) Letting G act via α, since αg is an isomorphism for any g ∈ G, from
αg(O) = O we get O = α−1

g (O) ⊆ α−1
g (O), where the latter is closed, hence

O ⊆ α−1
g (O), thus αg(O) ⊆ O, hence O is G-invariant.

Let O = xG, for some x ∈ V , let ∅ 6= U ⊆ O be open such that U ⊆ O, and let
h ∈ G such that xh ∈ U . Thus x ∈ Uh−1, implying O = xG ⊆

⋃
g∈G Ug ⊆ O,

and hence O =
⋃
g∈G Ug, where Ug ⊆ O is open for all g ∈ G.
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Let O =
⋃r
i=1Wi, where r ∈ N and the Wi ⊆ O are the irreducible components.

Assume that Wi ∩ O = ∅ for some i ∈ {1, . . . , r}, then O ⊆
⋃
j 6=iWi, hence

Wi ⊆ O ⊆
⋃
j 6=iWi, a contradiction. Hence we have O \ O =

⋃r
i=1(Wi \ O),

where Wi \ O 6= Wi for i ∈ {1, . . . , r}. Thus if Wi 6⊆ O then dim(Wi \ O) <
dim(Wi) ≤ dim(O), while if Wi ⊆ O then Wi \ O = ∅ anyway. Hence we get
dim(O \O) = max{dim(Wi \O) ∈ N0; i ∈ {1, . . . , r},Wi 6⊆ O} < dim(O).

b) We have to show that � is reflexive, transitive and anti-symmetric: We have
O ⊆ O. Moreover, O′′ ⊆ O′ and O′ ⊆ O imply O′′ ⊆ O′ ⊆ O. Finally, let
O′ ⊆ O and O ⊆ O′, hence we have O′ ⊆ O ⊆ O′, and both O,O′ ⊆ O = O′

being open and dense implies that O ∩O′ 6= ∅, thus O = O′.

The existence of �-minimal orbits follows from a) by induction on dimension. ]

Example. The natural action α of GLn on Kn, for n ∈ N0, is morphical:
We have α∗ : K[X1, . . . , Xn] → K[X1, . . . , Xn] ⊗K K[X11, . . . , Xnn]det : Xj 7→∑n
i=1Xi ⊗Xij ; for n = 1 we recover the right translation action of Gm on Ga.

Since GLn acts transitively on the non-zero vectors in Kn, for n ∈ N, we get
the orbits O0 := {0} and O1 := Kn \{0}, where O0 is closed of dimension 0, and
O1 is open of dimension n. Since O0 ⊆ O1 = Kn we conclude that O0 � O1.

(3.2) Proposition. Let G be an affine algebraic group, let V be a G-variety,
and let O,O′ ⊆ V be G-orbits. Moreover, let ϕ : K → V be a morphism such
that there is ∅ 6= U ⊆ K open fulfilling ϕ(U) ⊆ O, and ϕ(a) ∈ O′ for some
a ∈ K. Then we have O′ ⊆ O, that is O′ � O.

Proof. Recall that for a continuous map f : X → Y between topological spaces,
and a subset S ⊆ X, we have f(S) ⊆ f(S): Indeed, we have S ⊆ f−1(f(S)) ⊆
f−1(f(S)), where the latter is closed in X, implying S ⊆ f−1(f(S)).

Letting G act via α, we get the morphism β := (ϕ× id)α : K×G→ V ×G→
V . Writing G =

∐
g∈G◦\G G◦g, we get U × G =

∐
g∈G◦\G(U × G◦g) ⊆∐

g∈G◦\G(K ×G◦g) = K ×G. The irreducibility of K ×G◦ implies that U ×
G◦g ⊆ K×G◦g is dense, hence U ×G ⊆ K×G is dense. Hence we have O′ =
ϕ(a)G = β({a} ×G) ⊆ β(K×G) = β(U ×G) ⊆ β(U ×G) = ϕ(U)G = O. ]

Most often, this is applied for U := K\{a}, in which case, by abuse of notation,
we also write limt→a ϕ(t) := ϕ(a) ∈ V .

(3.3) Proposition. Let G be an affine algebraic group, let V be a G-variety,
and let x ∈ V . Then xG consists of finitely many G◦-orbits, all of which
are irreducible, and open and closed in xG. Moreover, the closures of the latter
constitute are precisely the irreducible components of xG, in particular entailing
that xG is equidimensional such that dim(xG) = dim(xG◦), Finally, we have
dim(CG(x)) = dim(CG◦(x)), and we have the orbit-stabiliser dimension formula
dim(G) = dim(CG(x)) + dim(xG).

Proof. Since G◦ E G has finite index, we have xG =
∐r
i=1 xgiG

◦, for some
g1, . . . , gr ∈ G and r ∈ N, where the xgiG

◦ = xG◦ · gi are G◦-invariant,
pairwise isomorphic irreducible subsets. Hence we get xG =

⋃r
i=1 xgiG

◦, where
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the xgiG◦ = xG◦ · gi are G◦-invariant, pairwise isomorphic irreducible closed
subsets. Considering dimensions shows xgjG

◦ 6� xgiG
◦ whenever j 6= i, hence

we get xgiG◦ ∩ xgjG◦ = ∅. This yields xgiG◦ ∩ xG = xgiG
◦, showing that

xgiG
◦ ⊆ xG is closed; since

∐
j 6=i xgjG

◦ ⊆ xG is closed, we conclude that

xgiG
◦ ⊆ xG is open as well. Moreover, this also shows that xG =

⋃r
i=1 xgiG

◦

is irredundant, hence the xgiG◦ are precisely the irreducible components of xG.

Moreover, since CG◦(x) ≤ CG(x) is a closed subgroup of finite index, we have
dim(CG(x)) = dim(CG◦(x)). Hence to show the last assertion, we may assume
that G is connected. Letting G act via α, then the orbit map αx : G→ xG is a
dominant morphism between irreducible varieties. Hence there is ∅ 6= U ⊆ xG
such that U ⊆ xG, and such that dim(α−1

x (y)) = dim(G)−dim(xG) for y ∈ U .
For any y ∈ U we have α−1

x (y) = {h ∈ G;xh = y} = CG(x)g ⊆ G, where g ∈ G
is fixed such that y = xg, implying dim(α−1

x (y)) = dim(CG(x)). ]

(3.4) Example: Matrix equivalence. For n ∈ N0 letM := Kn×n and G :=
GLn. Then G acts by conjugation on M, that is via M×G →M : [A, T ] 7→
T−1AT . Matrices A,B ∈ M are called equivalent if they belong to the same
G-orbit; recall that this holds if and only if their Jordan normal forms coincide.
Note that since G = ZnSLn, where Zn acts trivially on M, the G-orbits and
the SLn-orbits on M coincide.

For A ∈ M let χ(A) := det(XEn − A) = Xn +
∑n
i=1(−1)iεi(A)Xn−i ∈ K[X]

be the associated characteristic polynomial. Here, εi(A) coincides with the i-th
elementary symmetric polynomial in the eigenvalues of A. Thus, in terms of
the coordinate algebra K[X11, . . . , Xnn] of M, we have εi ∈ K[X11, . . . , Xnn]i,
for i ∈ {1, . . . , n}; in particular, we have ε1 =

∑n
i=1Xii and εn = detn.

This gives rise to the morphism ε : M→ Kn : A 7→ [ε1(A), . . . , εn(A)]. Moreover,
we have the morphism γ : Kn →M mapping x = [x1, . . . , xn] ∈ Kn to

γ(x) :=



. 1
. 1

. 1
. . .

. . .

. 1
(−1)n−1xn (−1)n−2xn−1 . . . −x2 x1


∈M;

note that in particular Jn = Jn(0) := γ(0) is a Jordan block of size n with
respect to the eigenvalue 0. From γ(x) being a companion matrix, we infer
χ(γ(x)) = Xn+

∑n
i=1(−1)ixiX

n−i, entailing that ε(γ(x)) = [x1, . . . , xn]. Hence
we have γε = idKn , in particular ε is surjective.

Since the characteristic polynomial of a matrix is invariant under base change,
we conclude that ε is G-invariant, that is constant on G-orbits. Hence for
x ∈ Kn the fibre ε−1(x) ⊆M is a closed union of G-orbits.

Since the eigenvalues of a matrix, together with their multiplicities, are uniquely
determined by its characteristic polynomial, the fibre ε−1(x) consists of only
finitely many G-orbits, being parametrised by the possible Jordan normal forms.
In particular, any fibre ε−1(x) contains a unique semisimple G-orbit, that is
a G-orbit consisting of diagonalisable matrices.
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Proposition. For any G-orbit O ⊆M we have:
a) There is a unique semisimple G-orbit contained in O.
b) The G-orbit O is closed if and only if it is semisimple.

Proof. a) We first consider A := aEn + tJn ∈M, for a, t ∈ K. Hence we have
χ(A) = (X − a)n, where A is semisimple if t = 0. Moreover, whenever t 6= 0 we
have rk((A− aEn)i) = rk(tiJ in) = n− i for i ∈ {0, . . . , n}. Thus in this case A
is equivalent to a Jordan block of size n with respect to the eigenvalue a.

Now, considering Jordan normal forms shows that there is matrix D +N ∈ O,
where D ∈ M is a diagonal matrix, and N =

⊕l
i=1 Jλi := diag[Jλ1 , . . . , Jλl ] ∈

M, where l ∈ N0 and λi ∈ N such that
∑l
i=1 λi = n. This gives rise to the

morphism ϕ : K→M : t 7→ D+tN . The above observation shows that ϕ(t) ∈ O
whenenever t 6= 0, while the G-orbit containing limt→0 ϕ(t) = D is semisimple.
Hence by (3.2) we conclude that the G-orbit of D is contained in O.

To show uniqueness, let V := ε−1(ε(O)) ⊆ M be the fibre of ε containing O.
Since V ⊆ M is closed we have O ⊆ V, where we have already seen that V
contains a unique semisimple G-orbit.

b) Let O be closed, that is we have O = O. By a) there is a semisimple G-orbit
contained in O, hence O is semisimple.

Conversely, let O be semisimple. Then by the closed orbit lemma there is a
closed G-orbitO0 contained inO, where we have just seen thatO0 is semisimple.
Hence we have O∪O0 ⊆ O, where by a) the latter contains a unique semisimple
G-orbit. Thus O = O0 is closed. ]

This facilitates a description of the G-invariant regular maps ϕ : M→ K; recall
that G-invariance is equivalent to being constant on G-orbits:

Firstly, any such ϕ is constant on the fibres of ε; hence the G-orbits contained
in one and the same fibre of ε cannot be separated by G-invariant regular maps:

For x ∈ Kn let V := ε−1(x) ⊆ M be the associated fibre, and let O0 ⊆ V be
the unique semisimple G-orbit. Then for any G-orbit O ⊆ V we have O0 ⊆ O.
Recalling that ϕ(O) is a singleton set, from O ⊆ ϕ−1(ϕ(O)), where the latter
is closed, we get O0 ⊆ O ⊆ ϕ−1(ϕ(O)). Hence we have ϕ(O) = ϕ(O0). ]

Now, it follows that ϕ is a polynomial in {ε1, . . . , εn}: Since ϕ is constant on
the fibres of ε, there is a map ϕ̃ : Kn → K such that ϕ = εϕ̃, where from
ϕ̃ = idKn · ϕ̃ = γεϕ̃ = γϕ we infer that ϕ̃ is regular.

(3.5) Dominance order on partitions. a) We will need some combinatorics
of partitions, which we collect next: We consider the set P (n) of partitions of
n ∈ N0. For a partition λ := [λ1, . . . , λl] ` n with l ∈ {0, . . . , n} parts we let
λi := 0 for i > l, thus we may write λ = [λ1, . . . , λn]. Then P (n) is partially
ordered by dominance E, where λ = [λ1, . . . , λn] ` n is said to dominate

µ = [µ1, . . . , µn] ` n if
∑k
i=1 µi ≤

∑k
i=1 λi for all k ∈ {0, . . . , n}.

It is immediate that reflexivity and transitivity hold. Moreover, from µEλ and
λ E µ we get

∑k
i=1 µi =

∑k
i=1 λi for k ∈ {1, . . . , n}, which successively entails
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µi = λi for k ∈ {1, . . . , n}. Hence we have antisymmetry as well, showing that
dominance E indeed is a partial order.

b) We describe the associated covering relation: Given µ ` n, we have µ l λ,
that is µC ν E λ already implies ν = λ, if and only if

λ = [µ1, . . . , µr−1, µr + 1, µr+1, . . . , µs−1, µs − 1, µs+1, . . . , µn],

where 1 ≤ r < s ≤ n such that µs > µs+1, and µr−1 > µr if r > 1, and such
that either s = r + 1, or s > r + 1 and µr = µs:

If µ l λ, then let r := min{i ∈ {1, . . . , n};µi 6= λi} and s := min{k ∈ {r +

1, . . . , n};
∑k
i=1 µi =

∑k
i=1 λi}, thus 1 ≤ r < s ≤ n. Hence we have µr < λr,

and λr ≤ λr−1 = µr−1 if r > 1, as well as µs > λs ≥ λs+1 ≥ µs+1. This yields

µC ν := [µ1, . . . , µr−1, µr + 1, µr+1, . . . , µs−1, µs − 1, µs+1, . . . , µn] E λ,

hence ν = λ. It remains to show µr = µs whenever s > r + 1: Assume to the
contrary that µr > µs, and let r < t := min{i ∈ {r + 1, . . . , s};µi−1 > µi} ≤ s.
If t = s then

µC [µ1, . . . , µr−1, µr + 1, µr+1, . . . , µs−2, µs−1 − 1, µs, . . . , µn] C ν = λ,

while if t < s then

µC [µ1, . . . , µr, . . . , µt−1, µt + 1, µt+1, . . . , µs−1, µs − 1, µs+1, . . . , µn] C ν = λ,

a contradiction.

Let conversely λ be as asserted, and let ν = [ν1, . . . , νn] ` n such that µCνEλ.
Hence for i 6∈ {r, . . . , s} we have νi = µi. Thus if s = r+1 we conclude νr = µr+1
and νr+1 = µr+1 − 1, thus ν = λ. If s > r + 1 and hence µr = µs, then there
are r ≤ r′ < s′ ≤ s such that νi = µi for i 6∈ {r′, s′} as well as νr′ = µr′ + 1 and
νs′ = µs′ − 1. Since µr′ = νr′ − 1 ≤ νr′−1 − 1 = µr′−1 − 1 < µr′−1, whenever
r′ > 1, and µs′ = νs′ + 1 ≥ νs′+1 + 1 = µs′+1 + 1 > µs′+1, this implies r′ = r
and s′ = s, hence ν = λ in this case as well. ]

For example, we have λ E [n] and [1n] E λ for all λ ` n and n ∈ N0, and
[n− 1, 1]l [n] for n ≥ 2, and [13]l [2, 1]l [3] and [14]l [2, 12]l [22]l [3, 1]l [4]
and [14] l [2, 13] l [22, 1] l [3, 2] l [4, 1] l [5], and

[16]l [2, 14]l [22, 12]l{[3, 13], [23]}l [3, 2, 1]l{[4, 12], [32]}l [4, 2]l [5, 1]l [6],

where {[3, 13], [23]} and {[4, 12], [32]} are non-comparable.

c) Identifying a partition λ ` n having l parts with the set {[i, j] ∈ N2; i ∈
{1, . . . , l}, j ∈ {1, . . . , λi}}, it can be depicted by a Young diagram, that is
rectangular array of boxes consisting of l rows, where row i contains λi boxes.
Using this, the conjugate partition λ′ ` n is defined as the partition belonging
to the diagram obtained by reflecting the original one along its main diagonal.

Formally, if λ = [λ1, . . . , λn] ` n then letting λ′i := |{j ∈ N;λj ≥ i}| ∈ N0 for
i ∈ N, we have λ′1 ≥ · · · ≥ λ′n ≥ 0 and

n∑
i=1

λ′i =

n∑
j=1

|{i ∈ {1, . . . , n}; i ≤ λj}| =
n∑
j=1

λj = n,
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hence indeed λ′ := [λ′1, . . . , λ
′
n] ` n is a partition of n.

Moreover, conjugating twice yields λ′′ ` n, where λ′′i = |{j ∈ N;λ′j ≥ i}| =∣∣{j ∈ N; |{k ∈ N;λk ≥ j}| ≥ i}
∣∣ =

∣∣{j ∈ N; {1, . . . , i} ⊆ {k ∈ N;λk ≥ j}
}∣∣ =

|{j ∈ N;λi ≥ j}| = |{1, . . . , λi}| = λi, that is we indeed have λ′′ = λ.

Recalling that in terms of multiplicities we also write λ = [nan , . . . , 1a1 ], where
ai = ai(λ) := |{j ∈ {1, . . . , l};λj = i}| ∈ N0, the fastest way to compute

conjugate partitions is given as follows: Writing λ′ = [na
′
n , . . . , 1a

′
1 ] ` n, for

i ∈ {1, . . . , n} we have

a′i = |{j ∈ N;λ′j = i}|
=

∣∣{j ∈ N; |{k ∈ N;λk ≥ j}| = i}
∣∣

=
∣∣{j ∈ N; {k ∈ N;λk ≥ j} = {1, . . . , i}

}∣∣
= |{j ∈ N;λi ≥ j, λi+1 < j}|
= |{λi+1 + 1, . . . , λi}|
= λi − λi+1.

For example, we have [n]′ = [1n] for n ∈ N0, and [n−1, 1]′ = [2, 1n−2] for n ≥ 2,
as well as [22]′ = [22] and [3, 2]′ = [22, 1] and [3, 12]′ = [3, 12].

d) Then we have µEλ if and only if λ′Eµ′, in other words conjugating partitions
inverts the dominance partial order:

To show this, it suffices to assume to the contrary that µ E λ but λ′ 6E µ′.
Then for some k ∈ N we have

∑j
i=1 λ

′
i ≤

∑j
i=1 µ

′
i for j ∈ {1, . . . , k − 1}, and∑k

i=1 λ
′
i >

∑k
i=1 µ

′
i. Hence we have λ′k > µ′k and

∑n
i=k+1 λ

′
i <

∑n
i=k+1 µ

′
i. Now

we have
n∑

i=k+1

λ′i =

n∑
i=k+1

|{j ∈ N; i ≤ λj}| =
λ′k∑
j=1

(λj − k),

and similarly we get
∑n
i=k+1 µ

′
i =

∑µ′k
j=1(µj − k); note that λj ≥ k for j ∈

{1, . . . , λ′k}. This implies that
∑µ′k
j=1(µj − k) >

∑λ′k
j=1(λj − k) ≥

∑µ′k
j=1(λj − k),

thus we have µ 6E λ, a contradiction. ]

(3.6) Example: Nilpotent matrices. a) We keep the notation of (3.4) and
(3.5), and let N := ε−1(0) = {A ∈ M;χ(A) = Xn} = {A ∈ M;An = 0} ⊆ M
be the nilpotent variety. Hence the G-orbits in N are parametrised by the
Jordan normal forms with respect to the eigenvalue 0, that is block diagonal
matrices

⊕l
i=1 Jλi , where l ∈ N0 and λi ∈ N such that

∑l
i=1 λi = n.

Assuming that λ1 ≥ · · · ≥ λl, we infer that the Jordan normal forms in turn are
parametrised by the partitions λ := [λ1, . . . , λl] ` n. Thus N can be written
as a disjoint union of G-orbits as N =

∐
λ`nNλ, where N[λ1,...,λl] contains⊕l

i=1 Jλi . The orbit closure relation on N induces a partial order on P (n). We
are going to show that the latter coincides with the dominance partial order E
on P (n), and thus has a purely combinatorial description:

i) We show thatN λ ⊆ NEλ :=
∐
µEλNµ ⊆ N : For a Jordan block Ji ∈ Ci×i, for

some i ∈ N0, we have rk(Jki ) = i− k for k ∈ {0, . . . , i}. Thus for A ∈ Nλ, where
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λ = [nan , . . . , 1a1 ] ` n, we have rk(Ak) =
∑n
i=k+1(i−k)ai =

∑n
i=k+1

∑n
j=i aj =∑n

i=k+1

∑n
j=i(λ

′
i−λ′i+1) =

∑n
i=k+1 λ

′
i = n−

∑k
i=1 λ

′
i, for k ∈ {0, . . . , n}. Hence

λ and thus Nλ are uniquely determined by the rank sequence [rk(Ak) ∈ N0; k ∈
{0, . . . , n}]; note that we have rk(A0) = n and rk(An) = 0 anyway.

Now let µ ` n and B ∈ Nµ. Then we have µE λ if and only if λ′ E µ′, hence in
terms of matrices this holds if and only if rk(Ak) ≥ rk(Bk) for all k ∈ {0, . . . , n}.
Thus we have B ∈ NEλ if and only if rk(Bk) ≤ n−

∑k
i=1 λ

′
i for all k ∈ {0, . . . , n}.

In other words, letting N≤k := {C ∈ N ; rk(C) ≤ k} ⊆ N , we have B ∈ NEλ if
and only if Bk ∈ N≤(n−

∑k
i=1 λ

′
i)

for all k ∈ {0, . . . , n}.

Recall that rk(C) ∈ N0 equals the smallest k ∈ N0 such that all
(
(k+1)×(k+1)

)
-

minors of C ∈M vanish; in this case all larger minors of C vanish as well. Hence
we conclude that N≤k ⊆ N is closed, for k ∈ N0. Thus, since taking matrix
powers is a morphism, we conclude that NEλ ⊆ N is closed as well. From this,
since NEλ contains Nλ, we infer that N λ ⊆ NEλ.

ii) For the converse NEλ ⊆ N λ, we have to show that µE λ implies Nµ ⊆ N λ.
In order to do so, by the transitivity of the closure relation we may assume that

µ := [λ1, . . . , λr−1, λr − 1, λr+1, . . . , λs−1, λs + 1, λs+1, . . . , λn] l λ,

for some 1 ≤ r < s ≤ n. Letting a := λr and b := λs, hence a−1 ≥ b+1 ≥ 1, we
have Ja⊕Jb⊕N ∈ Nλ and Ja−1⊕Jb+1⊕N ∈ Nµ, where N ∈ K(n−a−b)×(n−a−b).
Hence we may assume that λ = [a, b] ` n and µ = [a− 1, b+ 1] ` n, and let

Nε =



. ε 1
. 1

. . .
. . .

. 1
.

. 1
. . .

. . .

. 1
.


∈ N ,

for ε ∈ K, where the upper left and lower right hand corners have size a×a and
b× b, respectively. We show that Nε ∈ Nλ if ε 6= 0, while limε→0Nε = N0 ∈ Nµ:

If b = 0, then for ε 6= 0 the unit vector e1 ∈ Kn has minimum polynomial
Xa ∈ K[X] with respect to Nε, hence Nε has Jordan normal form Ja; moreover,
N0 has Jordan normal form Ja−1 ⊕ J1. Hence we may assume that b > 0.

If ε 6= 0 then, since a > b, the unit vector e1 ∈ Kn has minimum polyno-
mial Xa ∈ K[X] with respect to Nε. Moreover, the unit vector ea+1 ∈ Kn
has minimum polynomial Xb ∈ K[X]. From 〈ea+1〉Nε = 〈ea+1, . . . , en〉K and
〈e1〉Nε ∩ 〈ea+1, . . . , en〉K = {0} we conclude Kn = 〈e1〉Nε ⊕ 〈ea+1〉Nε , hence Nε
has Jordan normal form Ja ⊕ Jb.
If ε = 0 then e2 ∈ Kn and e1 ∈ Kn have minimum polynomials Xa−1 ∈ K[X]
and Xb+1 ∈ K[X], respectively, with respect to N0. From 〈e2〉N0

= 〈e2, . . . , ea〉K
and 〈e1〉N0

= 〈e1, ea+1, . . . , en〉K we conclude Kn = 〈e2〉N0
⊕ 〈e1〉N0

, hence N0

has Jordan normal form Ja−1 ⊕ Jb+1. ]
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b) We show that N is irreducible such that dim(N ) = n(n− 1):

We may assume that n ≥ 1. We have λ E [n] for all λ ` n. Hence we have
N [n] = N , thus Jn · G = N[n] ⊆ N is open and dense; the elements of N[n]

are called regular nilpotent. In particular, since G is connected, N[n] is
irreducible, and thus N is as well.

Moreover, we have dim(N ) = dim(G) − dim(CG(Jn)) = n2 − dim(CG(Jn)).
Let C := CM(Jn) := {A ∈ M;AJn = JnA}, which is both a closed subset and
a K-subalgebra of M, thus dim(C) = dimK(C). Since CG(Jn) = C ∩ G ⊆ C
is open, we conclude that dim(CG(Jn)) = dim(C). Thus we have dim(N ) =
n2 − dimK(C), and it remains to be shown that dimK(C) = n:

Let A := K[Jn] ∼= K[X]/〈Xn〉 be the K-subalgebra ofM generated by Jn; recall
that Jn has minimum polynomial Xn ∈ K[X]. Since 〈Jn〉 EA is nilpotent, we
conclude that A/rad(A) = A/〈Jn〉 ∼= K, so that the unique simple A-module
is given by Jn 7→ 0 ∈ K1×1. Now the A-module Kn is generated as an A-
module by the unit vector e1, and since dimK(A) = n we conclude that Kn is
isomorphic to the regular A-module, the latter being the projective cover of the
unique simple A-module. Thus we have C = EndA(Kn) ∼= A◦, the opposite
K-algebra of A, and since A is commutative we get C = A. (Indeed, the latter
being a local K-algebra, we have CG(Jn) = C\rad(C), thus choosing the K-basis

{En, Jn, . . . , Jn−1
n } ⊆ C we get CG(Jn) = {

∑n−1
i=0 aiJ

i
n ∈M; ai ∈ K, a0 6= 0}.) ]

4 Representations

(4.1) Representations. Let G be an affine algebraic group, and let δ : G →
GLn : g 7→ [gij(g)]ij , where n ∈ N0, be a (matrix) representation, that is
a group homomorphism. Hence we get an action of G on the affine variety
V := Kn by K-linear maps by letting α : V ×G→ V : [x, g] 7→ xδ(g).

The map δ is a morphism of varieties if and only if δ∗ : K[X11, . . . , Xnn]det →
K[G] : Xij 7→ gij defines a homomorphism of K-algebras, which in turn holds if
and only if the coordinate functions gij are regular maps, for i, j ∈ {1, . . . , n};
note that detn(g11, . . . , gnn) 6= 0 anyway. Recall that in this case δ is called an
algebraic or rational representation of G of degree n. For example, for
n = 1, letting G→ Gm : g 7→ 1 defines the trivial representation.

Moreover, let K[V ] = K[X ] =
⊕

d∈N0
K[X ]d =

⊕
d∈N0

K[V ]d be the coordinate
algebra of V , where X := {X1, . . . , Xn}. In order to determine the comor-
phism associated with α, for i ∈ {1, . . . , n} we observe Xi([x1, . . . , xn] · δ(g)) =
Xi([

∑n
j=1 xjgjk(g)]k) =

∑n
j=1 xjgji(g) = (

∑n
j=1Xj ⊗ gji)(x1, . . . , xn; g), for all

x1, . . . , xn ∈ K and g ∈ G. This entails α∗ : K[V ] → K[V ] ⊗K K[G] : Xi 7→∑n
j=1Xj ⊗ gji. Hence we conclude that δ is algebraic if and only if α is a mor-

phical action. In this case V becomes a G-variety, on which G acts by K-linear
maps, and as such is called a G-module.

(4.2) Homomorphisms. a) Let G be an affine algebraic group, and let V
and W be G-modules, with associated algebraic representations δ : G → GLn
and δ′ : G→ GLm, respectively. Then a K-linear map ϕ : V → W which is G-
equivariant in the sense of ϕ(xδ(g)) = ϕ(x)δ′(g), for x ∈ V and g ∈ G, is called
a homomorphism of G-modules; in particular ϕ is a morphism of varieties.
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The G-modules V and W are called isomorphic if there is a bijective homomor-
phism ϕ : V →W of G-modules; in this case, ϕ−1 : W → V is a homomorphism
of G-modules as well, and we write V ∼= W . In terms of representations, this
is equivalent to saying that there is α ∈ GLn such that δ′(g) = α−1δ(g)α, for
g ∈ G; in this case δ and δ′ are called equivalent.

Let HomG(V,W ) be the K-vector space of all G-equivariant K-linear maps
from V to W . Similarly, we get the K-vector space EndG(V ) := HomG(V, V )
of all G-equivariant K-endomorphisms of V , and the (affine algebraic) group
AutG(V ) := EndG(V ) ∩GL(V )) of all G-equivariant K-automorphisms of V .

b) Let U ≤ V be a G-invariant K-subspace; for example, U = {0} and U = V .
Then, by choosing a K-basis of V containing a K-basis of U , and going over
to an equivalent representation, we get algebraic representations G → GL(U)
and G → GL(V/U) on the K-subspace U of V , and the associated quotient
K-vector space V/U , respectively, such that the natural maps ιU : U → V and
νU : V → V/U are G-equivariant. Note that the G-submodule U and the
quotient G-module V/U are only determined up to G-isomorphism.

In particular, given ϕ ∈ HomG(V,W ), the kernel ker(ϕ) ≤ V and the image
ϕ(V ) ≤W are G-submodules, such that V/ ker(ϕ) ∼= ϕ(V ) as G-modules.

c) If {Ui ≤ V ; i ∈ I} are G-submodules, where I 6= ∅ is an index set, then so
are their intersection

⋂
i∈I Ui ≤ V and their sum

∑
i∈I Ui ≤ V .

If S ⊆ V is a subset, then 〈S〉G :=
⋂
{U ≤ V G-submodule;S ⊆ U} ≤ V is

called the G-submodule generated by S; note that since S ⊆ V the inter-
section is taken over a non-empty set. In particular, if {Ui ≤ V ; i ∈ I} are
G-submodules then we have 〈Ui; i ∈ I〉G =

∑
i∈I Ui.

(4.3) Constructions. a) Let G be an affine algebraic group, and let V and
W be G-modules, with associated algebraic representations δ : G → GLn and
δ′ : G→ GLm, respectively. Then V ⊕W becomes a G-module with respect to
the algebraic representation G→ GLn+m : g 7→ δ(g)⊕ δ′(g) := diag[δ(g), δ′(g)].

b) Let H be an affine algebraic group, and let U be an H-module, with associ-
ated algebraic representation ε : H→ GLr. Then V ⊗K U becomes a (G×H)-
module, with respect to the algebraic representation G×H→ GLnr : [g, h] 7→
δ(g)⊗ ε(h), the latter denoting the Kronecker product, having coordinate func-
tions [δ(g)⊗ ε(h)]ij,kl = δ(g)ik · ε(h)jl, for i, k ∈ {1, . . . , n} and j, l ∈ {1, . . . , r}.
In particular, V ⊗KW becomes a (G×G)-module. Thus, restricting along the
diagonal embedding G → G ×G of algebraic groups, it becomes a G-module
with respect to the algebraic representation G→ GLnm : g 7→ δ(g)⊗ δ′(g).

c) The dual K-space V ∨ := HomK(V,K) of V becomes a G-module with respect
to the G-action such that g ∈ G maps λ ∈ V ∨ to λg : x 7→ λ(xg−1). With
respect to the K-basis B∨ ⊆ V ∨ dual to the standard K-basis B ⊆ V , the
G-action is given by the algebraic representation δ∨ : G → GLn : g 7→ δ(g)−tr;
recall that inversion is an automorphism of G as a variety. The representation
δ∨ is called the representation contragredient to δ.

More generally, HomK(V,U) becomes a (G×H)-module by letting [g, h] ∈ G×H
act by mapping ϕ ∈ HomK(V,U) to ϕ[g,h] : V → U : x 7→ x · g−1ϕh. In other
words, in terms of the standard K-bases B ⊆ V and C ⊆ U , respectively, we
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get B(ϕ[g,h])C = δ(g)−1 ·BϕC · ε(h), in particular showing that this indeed is an
algebraic representation.

Employing the natural isomorphism HomK(V,U) ∼= V ∨⊗KU of K-vector spaces,
in terms of the standard K-basis B∨⊗C ⊆ V ∨⊗KU the action of [g, h] ∈ G×H
translates into the Kronecker product δ(g)−tr⊗ε(h). Thus in conclusion we have
HomK(V,U) ∼= V ∨ ⊗K U as (G×H)-modules.

In particular, HomK(V,W ) becomes a (G×G)-module. Thus, restricting along
the diagonal embedding G→ G×G of algebraic groups, HomK(V,W ) becomes
a G-module, for which we have HomK(V,W )G = {ϕ ∈ HomK(V,W );ϕg =
ϕ for all g ∈ G} = {ϕ ∈ HomK(V,W ); gϕ = ϕg for all g ∈ G} = HomG(V,W ).

(4.4) Simple modules. a) Let G be an affine algebraic group, and let V 6= {0}
be a G-module, with algebraic representation δ. Then V is called simple, and
δ is called irreducible, if {0} and V are the only G-submodules of V .

The property of being simple is an invariant of the G-isomorphism class of V .
Hence let ΣG be the set of G-isomorphism classes of simple G-modules; note
that ΣG is not necessarily finite.

Proposition: Schur’s Lemma. Let V and W be simple G-modules.
i) If V 6∼= W then we have HomG(V,W ) = {0}. ii) We have EndG(V ) = K · idV .

Proof. i) Assume there is 0 6= ϕ ∈ HomK(V,W ). Then {0} 6= ϕ(V ) ≤ W is a
G-submodule, hence W being simple we have ϕ(V ) = W . Moreover, ker(ϕ) < V
is a proper G-submodule, hence V being simple we have ker(ϕ) = {0}. Hence
ϕ is bijective, and thus a G-isomorphism, a contradiction.

ii) Let ϕ be a G-endomorphism of V . Since K is algebraically closed, ϕ has
an eigenvalue a ∈ K. Hence ψ := ϕ − a · idV is a G-endomorphism, such that
ker(ψ) 6= {0}. Hence V being simple we have ker(ψ) = V , that is ϕ = a · idV . ]

b) In order to give a characterisation of simple G-modules, letAG,V ⊆ EndK(V )
be the (finite dimensional) K-algebra generated by δ(G) ≤ GL(V ). Then V is
simple if and only if AG,V = EndK(V ):

If V is simple, then since EndG(V ) = K · idV it follows from Wedderburn’s
Theorem (which we are not able to prove here) that AG,V = EndK(V ). Con-
versely, the equality AG,V = EndK(V ) implies that V cannot possibly have a
proper non-zero G-invariant K-subspace, hence V is simple. ]

c) We show that V is simple if and only if V ∨ is so; note that AG,V = EndK(V )
if and only if AG,V ∨ = EndK(V ∨), but here is a direct proof:

Since V ∨∨ ∼= V as G-modules, it suffices to show that if V is not simple
then V ∨ neither is. Hence letting U ≤ V be a G-submodule, the natural G-
monomorphism ι : U → V induces the G-epimorphism ι∗ : V ∨ → U∨ : λ 7→ ιλ,
where we only have to show that ι∗ indeed is G-equivariant: Since ι is G-
equivariant, for g ∈ G and y ∈ U we have (yι · g−1)λ = yg−1 · ιλ, thus
ι∗(λg) = ι ·λg = (ιλ)g = ι∗(λ)g. Finally, by a consideration of K-dimensions we
have {0} 6= U < V if and only if {0} 6= ker(ι∗) < V ∨. ]
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(4.5) Semisimple modules. a) Let G be an affine algebraic group, and let
V be a G-module, with associated algebraic representation δ. Then V is called
semisimple, and δ is called completely reducible, if V =

⊕r
i=1 Vi is the

direct sum of simple G-submodules Vi ≤ V , for some r ∈ N0.

Proposition. The following statements are equivalent:
i) V is semisimple. ii) V is a (possibly empty) sum of simple G-submodules.
iii) For any G-submodule U ≤ V there is a G-invariant complement W ≤ V ,
that is we have V = U ⊕W as G-modules.

Proof. The implication i)⇒ii) is trivial. For ii)⇒iii) we proceed by induction
on dimK(V )−dimK(U) ∈ N0, where the case U = V is trivial. Hence let U < V .
Since V is generated by simple G-submodules, there is a simple G-submodule
S ≤ V such that S 6≤ U . Since S is simple, we have U ∩ S = {0}, and hence
U ⊕ S ≤ V . By induction the latter has a G-invariant complement W ≤ V ,
thus we get V = U ⊕ (S ⊕W ) as G-modules.

To show iii)⇒ii) let U ≤ V be a maximal semisimple G-submodule, and assume
that U < V . Then U has a G-invariant complement {0} 6= W ≤ V . Let S ≤W
be a simple G-submodule. Then we have U ⊕ S ≤ V , where the latter is a
semisimple G-submodule, a contradiction. Hence we conclude that U = V ,
that is V is semisimple. ]

In particular, if V is semisimple and U ≤ V is a G-submodule, then both U and
V/U are semisimple again: If U ′ ≤ U is a G-submodule, then letting W ≤ V
be a G-invariant complement for U ′ we get U = U ′ ⊕ (W ∩ U); and since V is
a sum of simple G-submodule this also holds for the quotient G-module V/U .

b) For a G-isomorphism class σ ∈ ΣG let Vσ :=
∑
{S ≤ V G-submodule;S ∈

σ}. Thus Vσ ≤ V is a semisimple G-submodule, being called the σ-isotypic
socle of V . In particular, the isotypic socle associated with the trivial G-module
is {v ∈ V ; vg = v for all g ∈ G} = V G, that is the set of G-fixed points in V .

Proposition. Let S ∈ σ. Then Vσ ∼= Sr as G-modules for some r ∈ N0,
and the map εS : S ⊗K HomG(S, V ) → Vσ : v ⊗ ϕ 7→ ϕ(v) is a G-isomorphism,
where G acts trivially on HomG(S, V ) = HomK(S, V )G. Moreover, any simple
G-submodule of Vσ is G-isomorphic to S.

Proof. Let U ≤ Vσ be a maximal G-submodule with respect to being a direct
sum U =

⊕r
i=1 Si, such that Si ∼= S for all i ∈ {1, . . . , r}, and assume that

U < Vσ. By the definition of Vσ there is S ∼= Sr+1 ≤ Vσ such that S 6≤ U , thus
U ⊕ S ≤ Vσ, a contradiction. Hence U = Vσ, showing the first assertion.

For any 0 6= ϕ ∈ HomG(S, V ) we have S ∼= ϕ(S) ≤ Vσ. Hence εS is well-
defined and K-linear. Moreover, for g ∈ G we have εS((v ⊗ ϕ)g) = εS(vg ⊗
ϕ) = ϕ(vg) = ϕ(v)g = εS(v ⊗ ϕ)g, showing that εS is G-equivariant. Now
we have HomG(S, V ) ∼= HomG(S, Vσ) ∼=

⊕r
i=1 EndG(S) as K-vector spaces,

thus dimK(HomG(S, V )) = r, hence dimK(S ⊗K HomG(S, V )) = dimK(S) · r =
dimK(Vσ). Thus it suffices to show that εS is surjective: Letting Vσ =

⊕r
i=1 Si

be a fixed direct sum decomposition, for any i ∈ {1, . . . , r} there is an associated
G-embedding ιi : S → Si, entailing εS(S ⊗ ιi) = Si.
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Finally, in order to show the last assertion, let T ≤ Vσ be a simple G-submodule.
Then we have {0} 6= HomG(T, Vσ) ∼=

⊕r
i=1 HomG(T, S), implying T ∼= S. ]

Let soc(V ) :=
∑
σ∈ΣG

Vσ =
∑
{S ≤ V G-submodule} ≤ V be the largest

semisimple G-submodule of V , being called the socle of V .

If W is a G-module and ϕ ∈ HomG(V,W ), then we have ϕ(soc(V )) ≤ soc(W ).
Actually, since for simple G-modules S and T we have HomG(S, T ) 6= {0} if
and only if S ∼= T , we conclude that ϕ(Vσ) ≤Wσ, for σ ∈ ΣG.

Proposition. We have the direct sum decomposition soc(V ) =
⊕

σ∈ΣG
Vσ,

with only finitely many non-zero summands.

Proof. Letting {σ1, . . . , σk} ⊆ ΣG, we show by induction on k ∈ N0 that the

sum W :=
∑k
i=1 Vσi ≤ soc(V ) is direct; since soc(V ) is the sum of its isotypic

components and a finitely generated K-vector space, this implies the assertion:

The case k = 0 being trivial, let k ≥ 1. For any j ∈ {1, . . . , k} by induction
we have Wj :=

⊕
j 6=i∈{1,...,k} Vσi ≤ W . Assume that Wj ∩ Vσj 6= {0}, then

there is a simple G-submodule S ≤ Wj such that S ∈ σj . Hence we have
{0} 6= HomG(S,Wj) ∼=

⊕
j 6=i∈{1,...,k}HomG(S, Vσi), thus there is Vσi having a

G-submodule isomorphic to S, where j 6= i ∈ {1, . . . , k}, a contradiction. Hence
we infer Wj ∩ Vσj = {0}, so that the sum defining W is direct. ]

In particular, V is semisimple if and only if soc(V ) = V . In this case, V =⊕
σ∈ΣG

Vσ, where Vσ is called the σ-isotypic component of V , and [V : S] :=
dimK(Vσ)
dimK(S) ∈ N0 is called the multiplicity of S ∈ σ in V . Moreover, if W is a

semisimple G-module, then we have HomG(V,W ) =
⊕

σ∈ΣG
HomG(Vσ,Wσ).

(4.6) Action on coordinate algebras. a) Let G be an affine algebraic group,
let V be an affine G-variety, and let K[V ] be the coordinate algebra of V . Hence
G acts from the left on K[V ], by K-algebra automorphisms. Thus pre-composing
with inversion yields a (right) G-action on K[V ]; recall that the latter is not
finitely generated as a K-vector space. Given a finitely generated G-invariant
K-subspace U ≤ K[V ], the proof of (2.7) shows that G-acts morphically and
K-linearly on U . Hence, U is a G-module, and by abuse of terminology it is
called a G-submodule of K[V ]. Moreover, by (2.6), G acts locally finitely on
K[V ], so that K[V ] is the union of its G-submodules.

Now let V be a G-module, with associated algebraic representation G →
GLn : g 7→ [gij(g)]ij , and let K[V ] = K[X1, . . . , Xn]. Since we have Xi 7→∑n
j=1Xj ⊗ gji, for i ∈ {1, . . . , n}, we conclude that all the homogeneous com-

ponents K[V ]d ≤ K[V ], for d ∈ N0, are G-submodules. In particular, for d = 0
we have K[V ]0 = K, on which G acts by the trivial representation. For d = 1,
with the respect to the K-basis X ⊆ K[V ]1 the matrix of the action of g ∈ G
is given by δ(g)tr, hence K[V ]1 is a G-module via g 7→ δ(g)−tr, thus carries the
contragredient representation associated with δ.

b) In particular, G acts on itself and thus on K[G] by right translation; in
this sense, again by abuse of terminology, K[G] is called the (right) regular
G-module. This is of importance in view of the following:
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Theorem. Let V ∨ = 〈λ1, . . . , λr〉G, where r ∈ N0. Then V is isomorphic to a
G-submodule of the r-fold direct sum K[G]r of the regular G-module.

Proof. Let λ ∈ V ∨. Then for x ∈ V let ϕλ,x : G → K : g 7→ λg(x) = λ(xg−1).
Since the orbit map associated with x is a morphism and λ is a regular map, we
conclude that ϕλ,x ∈ K[G]. Then the map ϕλ : V → K[G] : x 7→ ϕλ,x is K-linear
and G-equivariant: For g ∈ G and x, y ∈ V and a ∈ K we have ϕλ,ax+y(g) =
λg(ax+ y) = aλg(x) +λg(y) = aϕλ,x(g) +ϕλ,y(g), thus ϕλ,ax+y = aϕλ,x+ϕλ,y;
and for h ∈ G we have ϕλ,xh(g) = λ(xh · g−1) = λ(x · hg−1) = ϕλ,x(gh−1) =
(ϕλ,x)h(g), thus ϕλ,xh = (ϕλ,x)h.

Now, for i ∈ {1, . . . , r} let ϕi be the map associated with λi as above, and
let ϕ :=

⊕r
i=1 ϕi : V → K[G]r : x 7→ [ϕ1,x, . . . , ϕr,x]. Hence ϕ is K-linear and

G-equivariant. Finally, ϕ is injective: If ϕ(x) = 0, then we have λgi (x) = 0
for all i ∈ {1, . . . , r} and g ∈ G; hence from 〈λgi ; i ∈ {1, . . . , r}, g ∈ G〉K =
〈λ1, . . . , λr〉G = V ∨ we conclude that V ∨(x) = {0}, implying x = 0. ]

In particular, if V is simple then V ∨ = 〈λ〉G for any 0 6= λ ∈ V ∨, so that in this
case V is isomorphic to a G-submodule of the regular G-module K[G].

5 Linear reductivity

(5.1) Linear reductivity. An affine algebraic group G is called linearly re-
ductive if any G-module is semisimple; this is equivalent to saying that any
algebraic representation of G is completely reducible.

We look for examples: Recall that if G is a finite group, then the associated co-
ordinate algebra K[G] is the set of all maps from G to K, that is K[G] coincides
with the conventional group algebra of G. Hence any conventional represen-
tation of G is algebraic. Thus from representation theory of finite groups the
following is well-known:

Theorem: Maschke. Let G be a finite group. Then G is linearly reductive if
and only if char(K) - |G|. ]

As a generalisation of this, the following theorem says that in positive charac-
teristic there are not too many linearly reductive groups either. Actually, in
(5.7) we show that the question whether G is linearly reductive can be reduced
to the identity component G◦ and the finite quotient G/G◦, and in (5.2) we
show that tori are linearly reductive in any characteristic; recall that a torus is
an algebraic group isomorphic to (Gm)n, for some n ∈ N0:

Theorem: Nagata [1961]. Let char(K) = p > 0. Then G is linearly reductive
if and only if G◦ is a torus and p - [G : G◦]. ]

The situation is completely different if char(K) = 0, where there are many
more linearly reductive groups: For example, GLn and SLn, where n ∈ N, are
linearly reductive; unfortunately, we are not able to prove this here for n ≥ 2,
while SL1 = {1} is trivial, and GL1 = Gm is covered in (5.2). Actually, in
any characteristic linearly reductive groups are necessarily group theoretically
reductive, see (6.6), where for char(K) = 0 the latter property is also sufficient,
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and thus provides a rich source of linearly reductive groups. In (6.6) we indicate
that in any characteristic the groups GLn and SLn are reductive indeed, while
the following are typical examples of non-reductive groups:

Example. Let n ≥ 2, and let G := Bn or G := Un; recall that in particular
U2
∼= Ga. Let V := Kn be the natural G-module. Then U := 〈en〉 ≤ V is a

G-submodule. We show that U does not have a G-invariant complement in V ,
so that V is not semisimple and thus G is not linearly reductive:

Assume to the contrary that V = U ⊕W as G-modules. Let J := Jn(1) ∈ G
be a Jordan block of size n with respect to the eigenvalue 1. Then J has
characteristic polynomial χ(J) = (X − 1)n ∈ K[X], and thus has 1 ∈ K as its
only eigenvalue on both U and W . But we have kerV (J − En) = 〈en〉 = U , so
that kerW (J − En) = {0}, a contradiction. ]

(5.2) Example: Tori. We consider the torus Tn
∼= (Gm)n, where n ∈ N. We

show that it is linearly reductive, and determine its simple modules:

a) In order to show that Tn is linearly reductive, let V be a Tn-module with
associated algebraic representation δ : Tn → GLm, where m := dimK(V ) ∈ N0.
We show that δ is not only completely reducible, but even diagonalisable, that
is equivalent to an algebraic representation δ′ such that δ′(Tn) ⊆ Tm:

Since Tn
∼= (Gm)n is commutative, it is sufficient to show that T1 = Gm

is diagonalisable, that is to consider the case n = 1. To this end, let H :=
{t ∈ Gm; tk = 1 for some k ∈ Z such that gcd(p, k) = 1}, where p := 1 if
char(K) = 0, and p := char(K) otherwise; in other words H consists of all
elements of Gm of finite order coprime to p. Since Gm is commutative we infer
that H ≤ Gm is a subgroup. Since K is algebraically closed, we conclude that
H is infinite, thus H ⊆ Gm is a closed subset (actually a subgroup) of non-zero
dimension. Hence, since Gm is connected of dimension 1, we have H = Gm.
(Note that for K = C this does not work with respect to the metric topology.)

Let t ∈ H of order k ∈ N. Then the minimum polynomial of δ(t) divides T k−1 ∈
K[T ], and thus is multiplicity-free. Hence δ(t) ∈ GLm is diagonalisable. SinceH
is commutative it follows that δ(H) is diagonalisable, thus we may assume that
δ(H) ⊆ Tm ⊆ GLm, where the latter is closed. From H ⊆ δ−1(δ(H)) ⊆ Gm,
where since δ is continuous the latter is closed, we infer that H ⊆ δ−1(δ(H)),
that is δ(H) ⊆ δ(H). This yields δ(G) = δ(H) ⊆ δ(H) ⊆ Tm. ]

b) We proceed to determine the simple Tn-modules, where by the above we
already know that these are precisely those of K-dimension 1. We first stick to
the case n = 1, and continue to consider T1 = Gm:

Recalling that any simple module is a submodule of the regular module, we
consider the coordinate algebra K[Gm] ∼= K[X]X ∼= K[X,X−1]. The latter is
Z-graded, where letting Sd := 〈X−d〉K, for d ∈ Z, we have K[Gm] =

⊕
d∈Z Sd

as K-vector spaces. The right translation action Gm ×Gm → Gm : [x, t] 7→ xt
has comorphism K[Gm] → K[Gm] ⊗K K[Gm] : X 7→ X ⊗ T . Hence we have
Xd 7→ Xd ⊗ T d, for d ∈ Z, from which we conclude that the K-subspaces
Sd ≤ K[Gm] are Gm-submodules, with respect to Gm → GL1 = Gm : t 7→ td.
Hence the above direct sum decomposition of K[Gm] holds as Gm-modules,
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where the Sd are pairwise non-isomorphic simple Gm-submodules.

We show that ΣGm = {σd; d ∈ Z}, where Sd ∈ σd; in other words, ΣGm can
be naturally identified with Z: To this end let S ≤ K[Gm] be a simple Gm-
submodule. Since S is finitely generated, there is a finite subset I ⊆ Z such that
S ≤

⊕
d∈I Sd =: U . Since U is semisimple with isotypic components Uσd = Sd,

for d ∈ I, we conclude that S = Sd for some d ∈ I. ]

Let now n ∈ N be arbitrary. Then any simple Tn-module is uniquely determined
by its weight [d1, . . . , dn] ∈ Zn, where the action is given as Tn

∼= (Gm)n →
GL1 = Gm : [t1, . . . , tn] 7→

∏n
i=1 t

di
i ; in other words, for the associated simple

Tn-module we have S[d1,...,dn]
∼= Sd1 ⊗K · · · ⊗K Sdn . Conversely, any choice of

a weight in Zn gives rise to a simple Tn-module by way of the above formu-
lae. Moreover, simple Tn-modules are isomorphic if and only if their weights
coincide, so that in conclusion ΣTn can be naturally identified with Zn.

(5.3) Action on coordinate algebras again. a) Let G be an affine algebraic
group, and let V be an affine G-variety. We consider the associated G-action
on the coordinate algebra K[V ] of V . Recall from (4.6) that K[V ] =

⋃
{U ≤

K[V ] G-submodule} is the union of its G-submodules.

Note first that for G-modules U ≤ U ′ and any subset Σ ⊆ ΣG we have
(
⊕

σ∈Σ U
′
σ)∩U =

⊕
σ∈Σ Uσ; in particular for σ ∈ Σ we have U ′σ ∩U = Uσ: We

only have to show that ≤ holds; but the left hand side is semisimple, where any
of its simple submodules is contained in U and has an isomorphism type in Σ.

Hence for σ ∈ ΣG we have K[V ]σ :=
⋃
{Uσ;U ≤ K[V ] G-submodule} =∑

{Uσ;U ≤ K[V ] G-submodule} =
∑
{S ≤ K[V ] G-submodule;S ∈ σ}. Thus

K[V ]σ ≤ K[V ] is a G-invariant K-subspace, being called the σ-isotypic socle of
K[V ]; if it is finitely generated, then letting S ∈ σ we have K[V ]σ ∼= Sr, for some
r ∈ N0. Let soc(K[V ]) :=

∑
σ∈ΣG

K[V ]σ =
∑
{S ≤ K[V ] G-submodule} =∑

{soc(U);U ≤ K[V ] G-submodule} =
⋃
{soc(U);U ≤ K[V ] G-submodule} ≤

K[V ] be the socle of V .

Note that for any G-submodule U ≤ K[V ] and any subset Σ ⊆ ΣG we have
(
∑
σ∈Σ K[V ]σ)∩U =

⊕
σ∈Σ Uσ; hence in particular soc(K[V ])∩U = soc(U): We

only have to show that ≤ holds; but since
∑
σ∈Σ K[V ]σ =

⋃
{
∑
σ∈Σ U

′
σ;U ′ ≤

K[V ] G-submodule} the left hand side is semisimple, where any of its simple
submodules is contained in U and has an isomorphism type in Σ.

Moreover, we have the direct sum decomposition soc(K[V ]) =
⊕

σ∈ΣG
K[V ]σ,

with possibly infinitely many non-zero summands: Assume there is σ ∈ ΣG such
that K[V ]σ ∩

∑
σ 6=τ∈ΣG

K[V ]τ 6= {0}, then there is a G-submodule U ≤ K[V ]
such that Uσ ∩

∑
σ 6=τ∈ΣG

Uτ 6= {0}, a contradiction.

In particular, if V is a G-module, then the decomposition K[V ] =
⊕

d∈N0
K[V ]d

into homogeneous components is a direct sum of G-submodules. Thus we have
K[V ]σ =

⊕
d∈N0

K[V ]d,σ, for σ ∈ ΣG, and soc(K[V ]d) =
⊕

σ∈ΣG
K[V ]d,σ, for

d ∈ N0, hence we get soc(K[V ]) =
⊕

d∈N0
soc(K[V ]d) =

⊕
σ∈ΣG

K[V ]σ =⊕
d∈N0

⊕
σ∈ΣG

K[V ]d,σ =
⊕

σ∈ΣG

⊕
d∈N0

K[V ]d,σ.

b) If U ≤ K[V ] is a G-invariant (not necessarily finitely generated) K-subspace,
then both U and K[V ]/U carry locally finite G-actions. Hence the natural K-
linear map νU : K[V ] → K[V ]/U is G-equivariant, and for σ ∈ ΣG we have
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νU (K[V ]σ) ≤ νU (K[V ])σ = (K[V ]/U)σ and Uσ = U ∩K[V ]σ.

In particular, if W is an affine G-variety and ϕ : W → V is a G-equivariant
morphism, then ϕ∗ : K[V ] → K[W ] is a G-equivariant homomorphism of K-
algebras: For f ∈ K[V ] and g ∈ G we have ϕ∗(fg)(w) = fg(ϕ(w)) = f(ϕ(w) ·
g−1) = f(ϕ(wg−1)) = ϕ∗(f)(wg−1) = ϕ∗(f)g(w), for w ∈ W , thus ϕ∗(fg) =
ϕ∗(f)g. Hence the above applies with U := ker(ϕ∗) and K[V ]/U ∼= ϕ∗(K[V ]) as
K-algebras, entailing that ϕ∗(K[V ]σ) ≤ K[W ]σ.

c) Now assume that K[V ] = soc(K[V ]) =
⊕

σ∈ΣG
K[V ]σ, or equivalently that

soc(U) = U for all G-submodules U ≤ K[V ]; hence in particular this holds
whenever G is linearly reductive. Then K[V ]σ is called the σ-isotypic com-
ponent of K[V ]. If K[V ]σ is finitely generated, then K[V ]σ ∼= Sr, where S ∈ σ,

and [K[V ] : S] := r = dimK(K[V ]σ)
dimK(S) ∈ N0, is called the multiplicity of S in V ;

otherwise we let [K[V ] : S] :=∞.

If U ≤ K[V ] is a G-invariant K-subspace, then local finiteness implies that
U = soc(U) =

⊕
σ∈ΣG

Uσ =
⊕

σ∈ΣG
(U ∩ K[V ]σ). Moreover, if S ≤ K[V ]/U

is a simple G-submodule, then picking a K-vector space complement of U in
ν−1
U (S), by local finiteness there is a simple G-submodule T ≤ K[V ] such that
S = νU (T ). This entails νU (K[V ]σ) = (K[V ]/U)σ, hence we get (K[V ]/U)σ ∼=
K[V ]σ/(U∩K[V ]σ) = K[V ]σ/Uσ, for σ ∈ ΣG, and thus K[V ]/U = soc(K[V ]/U).

In particular, if W is an affine G-variety and ϕ : W → V is a G-equivariant
closed embedding, then for the associated epimorphism ϕ∗ : K[V ] → K[W ] of
coordinate algebras we have ϕ∗(K[V ]σ) = K[W ]σ.

(5.4) Invariant algebras. Let G be an affine algebraic group, and let V be an
affine G-variety. The isotypic socle of K[V ] associated with the trivial module
is given as {f ∈ K[V ]; fg = f for all g ∈ G} = K[V ]G, that is the set of G-
invariant regular maps on V ; recall that the latter are the regular maps being
constant on G-orbits.

Since the constant maps are contained in K[V ]G, and for f, f ′ ∈ K[V ]G we have
ff ′ ∈ K[V ]G as well, we conclude that K[V ]G is a K-subalgebra of K[V ], being
called the associated invariant algebra.

Then any isotypic socle K[V ]σ of K[V ], for σ ∈ ΣG, is a K[V ]G-module: For
the K-linear multiplication map ρf : K[V ] → K[V ] : h 7→ hf associated with
f ∈ K[V ]G we have (hf)g = hgfg = hgf , for g ∈ G, showing that ρf is
G-equivariant, entailing that indeed K[V ]σ · f ≤ K[V ]σ.

Moreover, if G is linearly reductive, then letting Kn, where n ∈ N0, be a G-
module such that there is a G-equivariant closed embedding ϕ : V → Kn, then
for the associated epimorphism ϕ∗ : K[X ]→ K[V ] of coordinate algebras we have
ϕ∗(K[X ]G) = K[V ]G. Thus the determination of invariant algebras arising from
arbitrary affine G-varieties can be reduced to the case of G-modules.

(5.5) Coordinate algebras of affine algebraic groups. Let G be an affine
algebraic group. Then G acts on itself both by right and by left translation.
Hence G acts on K[G] both by right and by left translation, where K[G] becomes
the regular G-module with respect to the former action, while with respect to
the latter K[G] is called the left regular G-module.
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We consider both actions at the same time: From h−1(xg) = (h−1x)g, for
x, g, h ∈ G, we conclude that G × G acts morphically on G by [h, g] : G →
G : x 7→ h−1xg. Hence we get an induced action of G ×G on the coordinate
algebra K[G] by [h, g] : K[G] → K[G] : f 7→

(
x 7→ f(hxg−1)

)
; in view of this

K[G] is also called the bi-regular G-module.

We proceed to describe the σ-isotypic socle K[G]σ ≤ K[G] explicitly; recall that
any simple G-module occurs as a G-submodule of K[G], so that K[G]σ 6= {0}:

Theorem. Let σ ∈ ΣG and S ∈ σ. Then K[G]σ ≤ K[G] is a (finitely generated)
(G ×G)-submodule, and we have K[G]σ ∼= S∨ ⊗K S ∼= EndK(S) as (G ×G)-
modules; in particular we have K[G]σ ∼= SdimK(S) as G-modules.

Proof. We provide an explicit (G×G)-equivariant embedding of S∨⊗K S into
K[G]: For x ∈ S and λ ∈ S∨ let ϕλ,x : G → K : g 7→ λg(x) = λ(xg−1); see
also (4.6). Since the orbit map associated with x is a morphism and λ is a
regular map, we conclude that ϕλ,x ∈ K[G]. Then the map ϕ : S∨ ⊗K S →
K[G] : λ⊗ x 7→ ϕλ,x is K-linear and (G×G)-equivariant:

Firstly, for g ∈ G and x, y ∈ S and λ, µ ∈ S∨ and a ∈ K we have ϕλ,ax+y(g) =
λg(ax+ y) = aλg(x) +λg(y) = aϕλ,x(g) +ϕλ,y(g), thus ϕλ,ax+y = aϕλ,x+ϕλ,y,
and ϕaλ+µ,x(g) = (aλ + µ)g(x) = (aλg + µg)(x) = aϕλ,x(g) + ϕµ,x(g), thus
ϕaλ+µ,x = aϕλ,x + ϕµ,x, showing K-bilinearity of f on S∨ × S. Secondly, for
h, t ∈ G we have ϕλt,xh(g) = λt(xh · g−1) = λ(xhg−1t−1) = λ(x · (tgh−1)−1) =

λtgh
−1

(x) = ϕλ,x(tgh−1) = (ϕλ,x)[t,h](g), thus we have ϕλt,xh = (ϕλ,x)[t,h].

Hence ϕ(S∨ ⊗K S) ≤ K[G] is a (G ×G)-submodule. We show that the image
ϕ(S∨ ⊗K S) only depends on the isomorphism class σ of S: To this end, let
α : S → T be a G-isomorphism. Then the map α∗ : T∨ → S∨ : τ 7→ ατ is a
G-isomorphism as well. Thus for y ∈ T we have τg(y) = τg(α(α−1(y))) =
(τg)α

∗
(α−1(y)) = (τα

∗
)g(α−1(y)), showing that ϕτ,y = ϕα∗(τ),α−1(y) ∈ K[G].

Hence we have ϕ(T∨ ⊗K T ) ≤ ϕ(S∨ ⊗K S), by symmetry entailing equality.

Next, S∨⊗KS is a simple (G×G)-module: Given a G-module V , letAG,V be the
(finite dimensional) K-algebra generated by the K-endomorphisms of V afforded
by G. Then, since K is algebraically closed, it is well-known from representation
theory that V is a simple G-module if and only if AG,V = EndK(V ). Now,
since S and S∨ are simple G-modules, we have AG,S = EndK(S) and AG,S∨ =
EndK(S∨), entailing that AG×G,S∨⊗KS

∼= AG,S∨ ⊗K AG,S = EndK(S∨) ⊗K
EndK(S) ∼= EndK(S∨ ⊗K S), thus S∨ ⊗K S is a simple (G×G)-module.

Now, choosing x ∈ S and λ ∈ S∨ such that λ(x) 6= 0 shows that ϕ 6= 0.
Hence, by simplicity, ϕ is injective. Moreover, restricting along the embedding
of algebraic groups G → G × G : g 7→ [1G, g] yields S∨ ⊗K S ∼= SdimK(S) as
G-modules, thus ϕ(S∨ ⊗K S) ≤ K[G]σ.

Finally, if T ≤ K[G] is a G-submodule such that T ∼= S, then let τ ∈ T∨ be
defined by τ : T → K : y 7→ y(1G). Then for y ∈ T and we have ϕτ,y(g) =

τg(y) = τ(yg
−1

) = yg
−1

(1G) = y(1G · g) = y(g), for g ∈ G, thus y = ϕτ,y ∈
ϕ(T∨⊗K T ), and hence T ≤ ϕ(T∨⊗K T ). Thus, since ϕ(S∨⊗K S) only depends
on the isomorphism class σ, we indeed have ϕ(S∨ ⊗K S) = K[G]σ. ]

An alternative description of the (G×G)-equivariant map ϕ defined above, using
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the (G ×G)-isomorphism S∨ ⊗K S ∼= EndK(S), is given as follows: Let B :=
{x1, . . . , xn} ⊆ S be a K-basis, where n := dimK(S), let B∨ := {λ1, . . . , λn} ⊆
S∨ be the associated dual K-basis, that is λi(xj) = δij for i, j ∈ {1, . . . , n},
and let δ : G→ GLn : g 7→ [gij(g)]ij be the algebraic representation associated
with S, with respect to the K-basis B. Then for ϕij := ϕλi,xj ∈ K[G] we have
ϕij(g) = λi(xjg

−1) = gji(g
−1), for g ∈ G.

Let α ∈ EndK(S), having matrix BαB = [aij ]ij ∈ Kn×n. Then α can be identi-
fied with

∑n
i=1

∑n
j=1 aijλi⊗xj ∈ S∨⊗KS, thus we have ϕα =

∑n
i=1

∑n
j=1 aijϕij ,

entailing ϕα(g) =
∑n
i=1

∑n
j=1 aijgji(g

−1) =
∑n
i=1(αδ(g−1))ii = Tr(αδ(g−1)),

for g ∈ G. Note that this again shows that the image of ϕ only depends on the
isomorphism class σ of S. ]

Theorem. The group G is linearly reductive if and only if K[G] = soc(K[G]).

Proof. If G is linearly reductive, then any G-submodule U ≤ K[G] is semisim-
ple, and thus we have K[G] =

∑
{U ≤ K[G] G-submodule} =

∑
{soc(U) ≤

K[G] G-submodule} = soc(K[G]).

Let conversely K[G] = soc(K[G]). Then for any G-submodule U ≤ K[G] we
have soc(U) = U ∩ soc(K[G]) = U , that is U is semisimple. Next, for any n ∈ N
and any G-submodule U ≤ K[G]n there are G-submodules U1, . . . , Un ≤ K[G]
such that U ≤

⊕n
i=1 Ui ≤ K[G]n, where

⊕n
i=1 Ui being semisimple entails that

U is semisimple as well. Finally, recall that any G-module is isomorphic to a
G-submodule of K[G]n for some n ∈ N. ]

In this case we have the decomposition K[G] = soc(K[G]) =
⊕

σ∈ΣG
K[G]σ into

isotypic components, with multiplicities [K[G] : S] = dimK(S), for S ∈ σ.

(5.6) Theorem. Let G be an affine algebraic group. Then G is linearly re-
ductive, if and only if for any G-epimorphism ϕ : V →W , where V and W are
G-modules, the induced map ϕG : V G →WG is surjective as well.

Proof. Note first that for any ϕ ∈ HomK(V,W ) we have ϕ(V G) ≤ WG, so
that ϕG is well-defined in any case. Now let G be linearly reductive. Then we
have HomG(V,W ) =

⊕
σ∈ΣG

HomG(Vσ,Wσ), implying that ϕ ∈ HomG(V,W )

is surjective if and only if all its components ϕσ : Vσ →Wσ are so, where ϕG is
the component of ϕ associated with the trivial G-module.

Let conversely G have the asserted property, let V be a G-module, and let
U ≤ V be a G-submodule. We show that U has a G-invariant complement
in V : To this end, we consider the G-modules HomK(V,U) and EndK(U), and
the G-equivariant map Φ: HomK(V,U) → EndK(U) : α 7→ α|U . Choosing a
K-vector space complement of U in V shows that Φ is surjective.

Hence ΦG : HomG(V,U) = HomK(V,U)G → EndK(U)G = EndG(U) is surjec-
tive as well. Thus in particular there is ϕ ∈ HomG(V,U) such that ϕ|U = idU ∈
EndG(U). Hence we have U ∩ ker(ϕ) = {0}. Moreover, for v ∈ V we have
ϕ(ϕ(v)) = idU (ϕ(v)) = ϕ(v), thus ϕ(v − ϕ(v)) = 0, hence v − ϕ(v) ∈ ker(ϕ),
thus v ∈ U + ker(ϕ). This shows that V = U ⊕ ker(ϕ) as G-modules. ]
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Corollary. The group G is linearly reductive, if and only if any G-module V
has a (unique) G-submodule V ′ ≤ V such that V = V G⊕V ′ and (V ′∨)G = {0}.

Proof. Let G be linearly reductive, and let V be a G-module. Then V being
semisimple we have the isotypic decomposition V = V G ⊕ V ′, where V ′ :=⊕

σ∈Σ′G
Vσ, where in turn Σ′G ⊆ ΣG is the union of the isomorphism classes of

simple G-modules being non-isomorphic to the trivial G-module K.

Assume that (V ′∨)G 6= {0}, then there a G-monomorphism ϕ : K→ V ′∨. Hence
the induced map ϕ∗ : V ′ = V ′∨∨ → K∨ ∼= K is a G-epimorphism, which since
HomG(V ′,K) ∼=

⊕
σ∈Σ′G

HomG(Vσ,K) = {0} is a contradiction.

Note that V ′ ≤ V is unique: If V = V G⊕U as G-modules, where we may assume
that U 6= {0}, then letting S ≤ U be a simple G-submodule we conclude that
S 6∼= K, entailing S ≤ V ′. Hence we infer that U ≤ V ′, which entails equality.

Let conversely G have the asserted property, and let V = V G ⊕ V ′ and W =
WG⊕W ′ be G-modules, where (V ′∨)G = {0}. Assume that HomG(V ′,WG) 6=
{0}. Then, since WG ∼= Kr for some r ∈ N, we get (V ′∨)G ∼= HomK(V ′,K)G =
HomG(V ′,K) 6= {0}, a constradiction. Hence we have HomG(V ′,WG) = {0}.
Now let ϕ : V →W be a G–epimorphism, let y ∈WG, and let x ∈ V such that
ϕ(x) = y. Writing x = x̃ + x′, where x̃ ∈ V G and x′ ∈ V ′, we get ϕ(x̃) ∈ WG

and ϕ(x′) ∈W ′. Thus from ϕ(x̃)+ϕ(x′) = y ∈WG we conclude that ϕ(x′) = 0
and y = ϕ(x̃) ∈ ϕ(V G). Hence ϕG : V G →WG is surjective. ]

(5.7) Theorem. Let G be an affine algebraic group.
a) Let G be linearly reductive. Then any closed normal subgroup of G and any
homomorphic image of G are linearly reductive as well.
b) Let π : G→ H a homomorphism of affine algebraic groups. If both ker(π)EG
and π(G) ≤ H are linearly reductive, then G is linearly reductive as well.

Proof. a) Let ϕ : G→ H be an epimorphism of affine algebraic groups, and let
V be an H-module with action α. Then V becomes a G-module via (idV ×ϕ)α.
Since the G-submodules of V coincide with its H-submodules, the semisimplic-
ity of V as an H-module follows from its semisimplicity as a G-module.

Let M E G be a closed normal subgroup. We show that soc(K[M]) = K[M],
to which end we let U ≤ K[M] be an M-submodule, and proceed to show that
U is semisimple: Now we observe that ρ : K[G] → K[M] : f 7→ f |M is an M-
equivariant epimorphism of K-algebras, with respect to the right translation
action of M on K[G], where ker(ρ) = I(M)EK[G] is the vanishing ideal of M.

Picking a K-vector space complement of ker(ρ) in ρ−1(U), and using local
finiteness of the G-action on K[G], we conclude that there is a G-submodule
W ≤ K[G] such that U ≤ ρ(W ). Hence it suffices to show that W is semisimple
as an M-module. By assumption, W is semisimple as a G-module, thus is a
sum of simple G-modules. Hence it suffices to show that the restriction of any
simple G-module S to M is semisimple:

Let T ≤ S be a simple M-submodule. From M E G we conclude that Tg ≤ S
is M-invariant as well, thus is a simple M-submodule, for g ∈ G. Moreover,
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{0} 6=
∑
g∈G Tg ≤ S is a G-submodule, which implies equality, and thus shows

that S as an M-module is a sum of simple M-submodules.

b) We may assume that π(G) = H, and let M := ker(π)EG. Letting ϕ : V →
W be a G-epimorphism, by assumption the induced map ϕM : VM → WM is
surjective. Moreover, VM = {x ∈ V ;xh = x for all h ∈M} ≤ V is G-invariant
and carries the trivial M-action, hence the G-action factors through the group
homomorphism π, so that VM carries a K-linear H-action. We show that thus
VM becomes an H-module, that is H acts morphically:

Identifying H with the set M\G of right M-cosets in G, it follows from the
linear reductivity of M and (7.7) (which actually has been proven for this
case), that the epimorphism π : G → H coincides with the quotient morphism
associated with the left translation action of M on G. Hence the associated
injective comorphism π∗ : K[H] → K[G] fulfills π∗(K[H]) = K[G]M = {f ∈
K[G]; f(hg) = f(g) for all g ∈ G, h ∈ M}; note that since π is M-invariant it
is immediate that π∗(K[H]) ⊆ K[G]M, but equality is not.

Let {x1, . . . , xn} ⊆ VM be a K-basis, where n := dimK(VM) ∈ N0, and let
G → GLn : g 7→ [gij(g)]ij be the associated algebraic representation, with
matrix coordinate functions gij ∈ K[G]. Then letting X := {X1, . . . , Xn} be the
associated coordinate functions, the G-action on VM has comorphism K[X ]→
K[X ] ⊗K K[G] : Xi 7→

∑n
j=1Xj ⊗ gji. Since M acts trivially on VM, we have

gij(hg) = gij(g), for g ∈ G and h ∈ M, that is gij ∈ K[G]M = π∗(K[H]), for
i, j ∈ {1, . . . , n}. Thus we have a comorphism K[X ] → K[X ] ⊗K π

∗(K[H]), in
other words the matrix coordinate functions give rise to regular maps on H.

This proves that VM is an H-module. Similarly WM ≤ W is, and ϕM is
H-equivariant. Hence by assumption the induced map ϕG = (ϕM)H : V G =
(VM)H → (WM)H = WG is surjective. Thus G is linearly reductive. ]

We will show in (7.7) that for any linearly reductive closed normal subgroup
M E G the quotient group G/M carries the structure of an affine algebraic
group, such that the natural map G → G/M is a homomorphism of algebraic
groups. Thus b) actually is the converse of a), saying that if MEG is any closed
normal subgroup such that both M and G/M are linearly reductive, then G is
linearly reductive as well.

Corollary. The group G is linearly reductive if and only if G◦ is linearly re-
ductive and char(K) - [G : G◦].

Proof. Since G◦EG has finite index, H := G/G◦ is an affine algebraic group,
and the natural quotient map ϕ : G → H is a morphism. Moreover, since ϕ is
constant on G◦-orbits we have π∗(K[H]) ⊆ K[G]G

◦
. Since H is finite, K[H] is

the set of all maps from H to K. Now any element of K[G]G
◦

naturally induces
such a map, hence it follows without further ado that π∗(K[H]) = K[G]G

◦
.

Then the assertion follows from Maschke’s Theorem. ]
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6 Reductivity

(6.1) Reynolds operators. We proceed to a further rephrasement of linear
reductivity. To this end, we need a couple of new notions. In order to introduce
the first one let G be an affine algebraic group.

Let V be an affine G-variety. Then a Reynolds operator on K[V ] is a G-
equivariant K-linear projection R = RG,V : K[V ]→ K[V ]G onto K[V ]G, that
is R|K[V ]G = idK[V ]G . Recall that hence K[V ]G ∩ ker(R) = {0}, and for f ∈
K[V ] we have R(f − R(f)) = 0, thus f ∈ K[V ]G + ker(R), showing that
K[V ] = K[V ]G ⊕ ker(R) as G-invariant K-subspaces.

Example. If G is finite such that char(K) - |G|, then a Reynolds operator is
given by averaging R : f 7→ 1

|G| ·
∑
g∈G fg: For g ∈ G and f ∈ K[V ] we have

R(f)g = 1
|G| ·

∑
h∈G fhg = 1

|G| ·
∑
h∈G fh = R(f), showing that R(f) ∈ K[V ]G;

moreover, we have R(fg) = 1
|G| ·

∑
h∈G fgh = 1

|G| ·
∑
h∈G fh = R(f) = R(f)g,

showing that R is G-equivariant; finally, for f ∈ K[V ]G we have R(f) = 1
|G| ·∑

h∈G fh = 1
|G| ·

∑
h∈G f = |G|

|G| · f = f , showing that R|K[V ]G = idK[V ]G .

Example. We consider the multiplicative group Gm, having coordinate algebra
K[T, T−1]. For an affine Gm-variety V with action α : V ×Gm → V we get the
comorphism α∗ : K[V ]→ K[V ]⊗K K[T, T−1] : f 7→

∑
i∈Z fi ⊗ T i, with uniquely

determined coefficients fi ∈ K[V ], that is f t
−1

(x) = f(xt) = f(α(x, t)) =
α∗(f)(x, t) = (

∑
i∈Z fi ⊗ T i)(x, t) =

∑
i∈Z fi(x)ti, for x ∈ V and t ∈ Gm.

Then a Reynolds operator is given as R(f) := f0 ∈ K[V ], for f ∈ K[V ]:

For x ∈ V and s ∈ Gm we have
∑
i∈Z fi(xt)s

i = f(xt · s) = f(x · ts) =∑
i∈Z fi(x)tisi, showing that (fi)

t = fit
−i for i ∈ Z and t ∈ Gm; in particular

we have R(f) = f0 ∈ K[V ]Gm . Moreover, we have
∑
i∈Z(f t)i(x)si = f t(xs) =

f(xs · t−1) = f(x · st−1) =
∑
i∈Z fi(x)t−isi, showing that (f t)i = fit

−i = (fi)
t;

in particular we have R(f t) = (f t)0 = (f0)t = R(f)t, thus R is Gm-equivariant.
Finally, for f ∈ K[V ]Gm we have

∑
i∈Z fi(x)t−i = f(xt) = f(x) =

∑
i∈Z fi(x),

showing that fi = 0 for i 6= 0, hence we have R(f) = f0 = f . ]

(6.2) Characterisation of linear reductivity. Let G be an affine algebraic
group. Before proceeding we introduce a second new notion:

The group G is called linear-geometrically reductive, if for any G-module
V and any 0 6= v ∈ V G there is f ∈ (V ∨)G = K[V ]G1 such that f(v) 6= 0.

Theorem. The following are equivalent:
i) The group G is linearly reductive, that is any G-module is semisimple.
ii) For any affine G-variety V there is a (unique) Reynolds operator on K[V ].
iii) The group G is linear-geometrically reductive.

Proof. i)⇒ii): Since any G-module is semisimple, any G-submodule U ≤ K[V ]
has a decomposition U = UG⊕U ′, where U ′ =

⊕
σ∈Σ′G

Uσ. Hence let RU : U →
UG be the associated G-equivariant projection onto UG, that is RU |UG = idUG
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and ker(RU ) = U ′. Then, whenever W ≤ K[V ] is a G-submodule such that
U ≤ W , we have RW |U = RU : We have UG ≤ WG and U ′ ≤ W ′, hence
RW |UG = idUG = RU |UG and RW |U ′ = 0 = RU |U ′ .
Thus we may define a K-linear map R : K[V ] → K[V ] as follows: For any
f ∈ K[V ] there is a G-submodule U ≤ K[V ] containing f , and we let R(f) :=
RU (f). Indeed, by the compatibility property shown above this is independent
of the choice of U . Then R is a Reynolds operator on K[V ]:

Since RU is G-equivariant, for all G-submodules U ≤ K[V ], we conclude that
R is G-equivariant as well. From RU (U) = UG we conclude that R(K[V ]) ≤
K[V ]G, from which, since K[V ]G is the union of such UG, we infer equality.
Finally, since RU |UG = idUG we get R|K[V ]G = idK[V ]G .

Note that R is the only possible choice how a Reynolds operator might look
like: Let R′ be a Reynolds operator on K[V ], and let U ≤ K[V ] be a G-
submodule. Then R′|K[V ]G = idK[V ]G implies that R′|UG = idUG . Moreover, we

have R′(U ′) ≤ K[V ]G, where R′(U ′) has zero isotypic component with respect
to any non-trivial simple G-module, thus we have R′(U ′) = {0}. This shows
that R′|U = RU , and since K[V ] is the union of such U we infer R′ = R.

ii)⇒iii): Let V be a G-module. Then we have V ∼= V ∨∨ = K[V ∨]1 as G-
modules, where v ∈ V is identified with the evaluation map v• : V ∨ → K : λ 7→
λ(v). For 0 6= v ∈ V G, that is v• ∈ K[V ∨]G1 , we may choose a K-linear form
λ : K[V ∨]G1 → K such that λ(v•) 6= 0. Then the Reynolds operator R yields the
G-equivariant map f := • ·R ·λ : V → K[V ∨]1 → K[V ∨]G1 → K. Hence we have
f ∈ (V ∨)G such that f(v) = λ(R(v•)) = λ(v•) 6= 0.

iii)⇒i): Recall that for v ∈ V and λ ∈ V ∨ and g ∈ G we have λg(v) = λ(vg−1).
Hence for any G-submodule U ≤ V we get the G-submodule ⊥U := {λ ∈
V ∨;U ≤ ker(λ)} ≤ V ∨, and similarly for any G-submodule W ≤ V ∨ we get the
G-submodule W⊥ := {v ∈ V ;W ≤ ker(v•)} ≤ V . Recall that as G-modules we
have (V/U)∨ ∼= ⊥U and U∨ ∼= V ∨/⊥U , as well as (V ∨/W )∨ ∼= (W⊥)• ∼= W⊥

and W∨ ∼= (V/W⊥)• ∼= V/W⊥.

We consider the G-equivariant K-linear map ρ : (V ∨)G → (V G)∨ : λ 7→ λ|VG .
Then, by applying the assumption to V ∨, we get ker(ρ) = (V ∨)G ∩ ⊥(V G) =
{0}, that is ρ is injective. For the associated map ρ∗ : V G → ((V ∨)G)∨ : v 7→
(v• : λ 7→ λ(v)), by applying the assumption to V , we get ker(ρ∗) = V G ∩
((V ∨)G)⊥ = {0}, that is ρ∗ is injective, or equivalently ρ is surjective.

Now we have V ∨ = (V ∨)G ⊕ ⊥(V G) as G-modules: We have already seen that
(V ∨)G∩⊥(V G) = {0}, so that the sum is direct; moreover we have V ∨/⊥(V G) ∼=
(V G)∨ ∼= (V ∨)G as G-modules, so that the sum equals V ∨.

In order to show the required fixed point property of ⊥(V G), we first observe that
similarly V = V G ⊕ ((V ∨)G)⊥ as G-modules: We have V G ∩ ((V ∨)G)⊥ = {0},
so that the sum is direct; moreover we have V/((V ∨)G)⊥ ∼= ((V ∨)G)∨ ∼= V G as
G-modules, so that the sum equals V .

Thus we have (⊥(V G))∨ ∼= (V/V G)∨∨ ∼= V/V G ∼= ((V ∨)G)⊥, where the latter
is a complement of V G in V , so that ((⊥(V G))∨)G ∼= ((V ∨)G)⊥)G = {0}. ]

Corollary. If K[V ] = soc(K[V ]) then the Reynolds operator R exists, and
viewing K[V ] as a K[V ]G-module then R is a K[V ]G-module homomorphism.
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Proof. The first assertion is what is actually proved in the implication i)⇒ii).

Then note that we have shown that any G-submodule U ≤ K[V ] is R-invariant,
and R|U = RU : U → UG is the G-equivariant projection onto UG, along the
unique complement U ′ =

⊕
σ∈Σ′G

Uσ of UG in U .

Next, recall that any f ∈ K[V ]G entails the G-equivariant K-linear multiplica-
tion map ρf : K[V ]→ K[V ] : h 7→ hf . Hence Uf ≤ K[V ] is a G-submodule such
that (Uf)G = UGf and (Uf)′ = U ′f , thus Uf = UGf ⊕ U ′f as G-modules.

Now we show that R(hf) = R(h)f , for any f ∈ K[V ]G and h ∈ K[V ]: Let
U ≤ K[V ] be a G-submodule containing h. If h ∈ UG then we have hf ∈ (Uf)G,
and thus R(hf) = RUf (hf) = hf = RU (h)f = R(h)f . If h ∈ U ′ then we have
hf ∈ (Uf)′, and thus R(hf) = RUf (hf) = 0 = RU (h′)f = R(h)f . ]

(6.3) Theorem: Hilbert’s Finiteness Theorem [1890]. Let G be linearly
reductive. Then K[V ]G is a finitely generated K-algebra, for any G-module V .

Proof. Let I := 〈
⊕

d∈N K[V ]Gd 〉 E K[V ] be the Hilbert ideal, that is the
(homogeneous) ideal of K[V ] generated by the maximal homogeneous ideal of
K[V ]G. Since K[V ] is Noetherian, there are elements fi ∈ K[V ]Gdi , where di ∈ N,
for i ∈ {1, . . . , r} and r ∈ N0, such that I = 〈f1, . . . , fr〉EK[V ]. We show that
any element of K[V ]Gd , where d ∈ N0, is a polynomial in {f1, . . . , fr}:
We proceed by induction on d ∈ N0, the case d = 0 being trivial we let d ≥
1. Letting h ∈ K[V ]Gd , we may write h =

∑r
i=1 gifi ∈ I, with homogeneous

elements gi ∈ K[V ]d−di . Applying the Reynolds operator yields h = R(h) =
R(
∑r
i=1 gifi) =

∑r
i=1R(gifi) =

∑r
i=1R(gi)fi. Since K[V ]d−di ≤ K[V ] is a G-

submodule, we conclude that R(gi) ∈ R(K[V ]d−di) = K[V ]Gd−di is homogeneous
of degree < d, and thus by induction is a polynomial in {f1, . . . , fr}. ]

Corollary. Let V be an affine G-variety V with coordinate algebra K[V ].
a) Then K[V ]G is a finitely generated K-algebra.
b) For any σ ∈ ΣG, the component K[V ]σ is a finitely generated K[V ]G-module.

Proof. a) Let Kn, where n ∈ N0, be a G-module such that there is a G-
equivariant closed embedding ϕ : V → Kn. Then for the G-equivariant surjec-
tive comorphism ϕ∗ : K[X ]→ K[V ] we have ϕ∗(K[X ]G) = K[V ]G. Hence, since
K[X ]G is finitely generated, K[V ]G is so as well.

b) Recall that K[V ] has an isotypic decomposition, with K[V ]G-invariant com-
ponents. Let S ∈ σ be a simple G-module. Since G acts locally finitely on K[V ],
the map εS : S ⊗K HomG(S,K[V ]) → K[V ]σ : v ⊗ ϕ 7→ ϕ(v) is a G-equivariant
bijection, with trivial G-action on HomG(S,K[V ]). Moreover, HomG(S,K[V ])
becomes a K[V ]G-module by ϕ 7→ ϕρf , for ϕ ∈ HomG(S,K[V ]) and f ∈ K[V ]G;
recall that ρf : K[V ]→ K[V ] : h 7→ hf is G-equivariant. Hence εS is an isomor-
phism of K[V ]G-modules, K[V ]G ∼= K⊗K K[V ]G acting ‘trivially’ on S.

Now we have K[S] =
⊕

d∈N0
K[S]d, with G-invariant homogeneous components.

Then S × V is an affine G-variety with respect to diagonal action, so that
K[S × V ]G ∼= (K[S] ⊗K K[V ])G is a finitely generated K-algebra. We have
(K[S] ⊗K K[V ])G =

⊕
d∈N0

(K[S]d ⊗K K[V ])G as graded K-algebras, so that in
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particular (K[S]1 ⊗K K[V ])G is a finitely generated (K[S]0 ⊗K K[V ])G-module,
with module structure inherited from multiplication in K[S] ⊗K K[V ]. Finally,
we have (K[S]0 ⊗K K[V ])G ∼= K[V ]G, and thus (K[S]1 ⊗K K[V ])G ∼= (S∨ ⊗K
K[V ])G ∼= HomK(S,K[V ])G = HomG(S,K[V ]) as K[V ]G-modules. ]

Despite appearance, and actually being part of Hilbert’s 14th problem, the
invariant algebra associated with an affine G-variety is not necessarily finitely
generated, not even for G-modules for char(K) = 0; see Exercise ?? for the
famous counterexample by [Nagata, 1959].

(6.4) Geometrical reductivity. An affine algebraic group G is called geo-
metrically reductive, if for any G-module V and any 0 6= v ∈ V G there is
f ∈ K[V ]Gd , for some d ∈ N, such that f(v) 6= 0.

Hence if G is linearly reductive then it is geometrically reductive. But if
char(K) > 0 the converse does not hold, so that in this case geometrical re-
ductivity is a genuine generalisation of linear reductivity. To see this we observe
below that any finite group G is geometrically reductive, but recall that G is
linearly reductive if and only if char(K) - |G|.

Theorem: Nagata–Miyata [1963]. If char(K) = 0, then G is geometrically
reductive if and only if it is linearly reductive. ]

The relevance of the notion of geometrical reductivity is elucidated by the follow-
ing theorem, whose ‘only if’ direction generalises Hilbert’s Finiteness Theorem,
while its ‘if’ direction provides the converse of the generalised version; for the
proof of the ‘only if’ direction by [Nagata] see [2, Sect.3.2]:

Theorem: Nagata [1963]; Popov [1979]. The group G is geometrically
reductive if and only if K[V ]G is finitely generated for any affine G-variety V . ]

At least we are able to prove the following:

Theorem. Let G be a finite group. Then G is geometrically reductive, and
K[V ]G is a finitely generated K-algebra for any affine G-variety V .

Proof. i) Let V be aG-module and 0 6= v ∈ V G. Letting K[V ] be the associated
coordinate algebra, we apply Dade’s trick to find a homogeneous invariant f
of positive degree such that f(v) 6= 0:

Let λ ∈ K[V ]1 such that λ(v) 6= 0. Then we have λg(v) = λ(vg−1) = λ(v), for
g ∈ G. Moreover, for fλ :=

∏
g∈G λ

g ∈ K[V ]|G| we get (fλ)h = (
∏
g∈G λ

g)h =∏
g∈G λ

gh =
∏
g∈G λ

g = fλ, for h ∈ G. Hence we conclude that fλ ∈ K[V ]G|G|
such that fλ(v) = λ(v)|G| 6= 0.

ii) Let V be an affine G-variety, and let {f1, . . . , fn} ⊆ K[V ] be a K-algebra
generating set, for some n ∈ N0. Then letting G act trivially on K[T ], let

pi :=
∏
g∈G(T − (fi)

g) = T j +
∑|G|−1
j=0 aijT

j ∈ K[V ][T ] ∼= K[V ] ⊗K K[T ], for

i ∈ {1, . . . , n}. Hence we get (pi)
g =

∏
h∈G(T − (fi)

h)g =
∏
h∈G(T − (fi)

hg) =∏
h∈G(T − (fi)

h) = pi, for g ∈ G, implying that pi ∈ K[V, T ]G = (K[V ]G)[T ].
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Hence we have aij ∈ K[V ]G, and let A := K[aij ; i ∈ {1, . . . , n}, j ∈ {0, . . . , |G| −
1}] ⊆ K[V ]G ⊆ K[V ]. Since pi is monic, we infer that fi is integral over A.
Thus K[V ] is a finitely generated A-module. Since A is a finitely generated
K-algebra, it is Noetherian. Hence K[V ] is a Noetherian A-module, and thus
K[V ]G ⊆ K[V ] is a finitely generated A-module. From this we conclude that
K[V ]G is a finitely generated K-algebra. ]

Note that this also shows that K[V ] is a finitely generated K[V ]G-module, thus
K[V ] is a finite algebra extension of K[V ]G.

(6.5) Example. We consider a couple of examples, which are not linearly
reductive: Firstly, let char(K) = p > 0 and let G = 〈g〉 ∼= Cp be the finite cyclic
group of order p, which hence is geometrically reductive. Then V := K2 becomes

a G-module by letting g 7→ J :=

[
1 1
0 1

]
; recall that Jp = E2. Hence g acts on V

by [x, y] 7→ [x, y+x], for x, y ∈ K. Moreover, we get V G = ker(J −E2) = 〈e2〉K.
We show that there is a homogeneous invariant of degree p not annihilating e2,
but there is no such invariant of smaller positive degree:

Let K[V ] = K[X,Y ] be the associated coordinate algebra, with coordinate func-
tions {X,Y }, on which g acts (from the right) by X 7→ X and Y 7→ Y − X.

Then Dade’s trick yields fY ∈ K[X,Y ]Gp as fY =
∏p−1
i=0 Y

gi =
∏p−1
i=0 (Y − iX) =

Xp ·
∏p−1
i=0 ( YX − i) = Xp ·

(
( YX )p − Y

X

)
= Y p − Y Xp−1 ∈ K[X,Y ]X .

Thus we have fY (e2) = 1. To see that we cannot do better we show that
K[X,Y ]G = K[X, fY ]; then, since K[X,Y ]G ⊆ K[X,Y ] is a finite algebra ex-
tension, we have dim(K[X,Y ]G) = dim(K[X,Y ]) = 2, hence {X, fY } are alge-
braically independent, so that K[X, fY ] actually is a polynomial algebra:

To show that K[X,Y ]G ⊆ K[X, fY ], for d ∈ N let f :=
∑d
i=0 aiX

iY d−i ∈
K[X,Y ]Gd , where ai ∈ K. If a0 = 0, then f = X · f ′, where f ′ ∈ K[X,Y ]Gd−1.

Hence we may assume that a0 = 1, implying f = Xd ·
(
( YX )d+

∑d
i=1 ai(

Y
X )d−i

)
=

Xd ·
∏d
i=1( YX −αi) =

∏d
i=1(Y −αiX) ∈ K[X,Y ]X , for suitable αi ∈ K. Now we

have f = fg =
∏d
i=1

(
Y − (αi + 1)X

)
. Hence there are βj ∈ {α1, . . . , αd} such

that f =
∏k
j=1 fY−βjX , for some k ∈ N, where fY−βX =

∏p−1
i=0 (Y − βX)g

i

=∏p−1
i=0

(
Y − (β + i)X

)
=
∏p−1
i=0

(
(Y − βX) − iX

)
= fY (X,Y − βX) = (Y −

βX)p − (Y − βX)Xp−1 = (Y p − Y Xp−1)− (βp − β)Xp = fY − fY (X,βX), for

β ∈ K. This shows that f =
∏k
j=1

(
fY − fY (X,βjX)

)
∈ K[X, fY ]. ]

Example. Secondly, we show that the additive group Ga is not even geomet-
rically reductive; note that this is contrary to the behaviour of the finite cyclic
group Cp of order p, which if char(K) = p > 0 is a subgroup of Ga:

We use the isomorphism Ga → U2 : t 7→
[
1 t
0 1

]
of algebraic groups. Hence let

V := K2 be the natural Ga-module, on which t ∈ K acts by [x, y] 7→ [x, y + tx],
for x, y ∈ K. In particular, we have V Ga = 〈e2〉K.

Let K[V ] = K[X,Y ] be the associated coordinate algebra, with coordinate
functions {X,Y }, on which t ∈ K acts (on the right) by the K-algebra au-
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tomorphism defined by X 7→ X and Y 7→ Y − tX. We proceed to show that
K[X,Y ]Ga = K[X]; then we have f |VGa = 0 for all f ∈ K[X,Y ]Ga

d and d ∈ N:

For d ∈ N let f :=
∑d
i=0 aiX

iY d−i ∈ K[X,Y ]d, for ai ∈ K. Then we have

f (−t) =
∑d
i=0 aiX

i(Y + tX)d−i =
∑d
i=0

∑d−i
j=0 ait

j
(
d−i
j

)
Xi+jY d−i−j . Hence

letting k = i+ j we get f (−t) =
∑d
k=0

(∑k
i=0 ait

k−i(d−i
k−i
))
XkY d−k ∈ K[X,Y ]d.

Thus we have f ∈ K[X,Y ]Ga

d if and only if
∑k
i=0 ai

(
d−i
k−i
)
T k−i = ak ∈ K[T ].

This is equivalent to ai
(
d−i
k−i
)

= 0 for 0 ≤ i < k ≤ d; note that the summand for
i = k indeed equals ak. Choosing k = d this entails ai = 0 for i ∈ {0, . . . , d−1},
in other words f = adX

d ∈ K[X]d ⊆ K[X,Y ]Ga

d . ]

Hence there are affine Ga-varieties whose associated invariant algebra is not
finitely generated; see Exercise ?? for an example of a non-linear Ga-action on
K5 where char(K) = 0 [Daigle–Freudenburg, 1999]. Still, in many cases the
invariant algebra associated with an affine Ga-variety is finitely generated, for
example, this is the case for any Ga-action on Kn where n ≤ 3 [Zariski, 1954],
and any Ga-module where char(K) = 0 [Weitzenböck, 1932].

(6.6) Reductivity. We proceed to rephrase geometrical reductivity in terms
of group theory. To this end, we recall a few notions and facts (without proofs)
from general theory of affine algebraic groups:

Let G be an affine algebraic group. For g, h ∈ G let [g, h] := g−1h−1gh ∈ G be
their commutator. For subgroups U,H ≤ G let [U,H] := 〈[u, h];u ∈ U, h ∈
H〉 ≤ G be the associated commutator subgroup.

The weakly descending derived series of normal subgroups of G is defined as
G(0) := G, and G(i) := [G(i−1),G(i−1)] E G for i ∈ N. Then G(i) is closed
indeed, and if G is connected then so are all the subgroups G(i). Moreover, G
is called solvable if there is l ∈ N0 such that G(l) = {1}.
Let the (solvable) radical R(G) of G be the subgroup generated by all closed
connected solvable normal subgroups of G. Then R(G) E G is the unique
maximal closed connected solvable normal subgroup of G.

Then G is called (group theoretically) reductive if R(G) is a torus, that is
isomorphic to (Gm)n for some n ∈ N0. In particular, G is called semisimple
if R(G) = {1}. Hence, since R(G)EG◦ and thus R(G) = R(G◦), we conclude
that G is reductive (semisimple) if and only G◦ is reductive (semisimple); note
that we do not assume G to be connected here.

For example, any torus is reductive, and any finite group is semisimple, while
Ga
∼= U2 is not reductive; recall that Ga is not isomorphic to Gm, see Exercise

??. We have already noted that GLn and SLn, for n ∈ N, are linearly reductive
if char(K) = 0, hence are geometrically reductive, or equivalently reductive
by the theorem below; reductivity of GLn and semisimplicity of SLn hold in
arbitrary characteristc, and can be verified straightforwardly, see Exercise ??.

Theorem: Mumford’s Conjecture; Nagata–Miyata [1963]; Haboush
[1975]. The group G is geometrically reductive if and only if it is reductive. ]
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7 Quotients

(7.1) Algebraic quotients. a) Let G be an affine algebraic group and let V
be an affine G-variety. We first observe the following:

If W is an affine variety and ϕ : V → W is a morphism, then ϕ is constant on
G-orbits if and only if ϕ∗(K[W ]) ⊆ K[V ]G:

If ϕ is constant on G-orbits, then for f ∈ K[W ] and g ∈ G we get ϕ∗(f)g(v) =
ϕ∗(f)(vg−1) = f(ϕ(vg−1)) = f(ϕ(v)) = ϕ∗(f)(v) for v ∈ V , showing that
ϕ∗(f)g = ϕ∗(f). Conversely, if ϕ∗(K[W ]) ⊆ K[V ]G then we get f(ϕ(vg−1)) =
ϕ∗(f)(vg−1) = ϕ∗(f)g(v) = ϕ∗(f)(v) = f(ϕ(v)) for f ∈ K[W ], which says that
ϕ(vg−1) = ϕ(v), for v ∈ V and g ∈ G. ]

b) Now we assume additionally that the invariant algebra K[V ]G is a finitely
generated K-algebra. Recall that this is always the case if G is (geometrically)
reductive or even linearly reductive (where we have only proved this here for
the latter case), or if G is finite.

Then there is an affine variety Z, such that there is a morphism π : V → Z
whose associated comorphism π∗ : K[Z] → K[V ] is an embedding with image
π∗(K[Z]) = K[V ]G. Then π is dominant and constant on G-orbits; in particular,
if V is irreducible then so is Z. Moreover, Z is uniquely determined up to
isomorphism, being called the (algebraic or categorical) quotient variety of
V with respect to G. Then Z has the following universal property:

Proposition. If ϕ : V → W is constant on G-orbits, then there is a unique
morphism ϕ : Z →W such that ϕ = πϕ:

Proof. Since ϕ is constant on G-orbits we have ϕ∗(K[W ]) ⊆ K[V ]G ⊆ K[V ].
Letting (π∗)′ : K[Z] → K[V ]G be the isomorphism induced by π∗, we thus get
the K-algebra homomorphism ϕ∗(π∗)′−1 : K[W ] → K[Z]. Thus let ϕ : Z → W
be the morphism with associated comorphism ϕ∗ = ϕ∗(π∗)′−1. Then we have
(πϕ)∗ = ϕ∗π∗ = ϕ∗(π∗)′−1π∗ = ϕ∗, that is πϕ = ϕ.

We show uniqueness: Let ϕ̃ : Z → W be a morphism such that πϕ̃ = ϕ, then
ϕ̃∗π∗ = ϕ∗ = ϕ∗π∗, since π∗ being injective, implies ϕ̃∗ = ϕ∗, that is ϕ̃ = ϕ. ]

In particular, if π′ : V → Z is any morphism as above, there are unique mor-
phisms ψ,ψ′ : Z → Z such that π′ = πψ and π = π′ψ′, where π′ = π′ψ′ψ =
π′ · idZ and π = πψψ′ = π · idZ imply that ψψ′ = idZ = ψψ′, thus ψ is an iso-
morphism such that ψ′ = ψ−1. Hence, denoting the quotient variety by V//G,
the quotient morphism π : V → V//G is unique up to a unique isomorphism,
and we may identify π∗ with the natural embedding K[V ]G ⊆ K[V ].

Example. We consider a non-reductive example: The additive group Ga acts

on V := K2 via Ga → GL2 : t 7→
[
1 t
0 1

]
, that is t ∈ K acts by [x, y] 7→ [x, y+tx],

for x, y ∈ K; see (6.5). Thus the Ga-orbits in V are uniquely given as [a, 0]·Ga =
{[a, y] ∈ V ; y ∈ K} for a ∈ K \ {0}, where dim([a, 0] ·Ga) = dim(Ga) = 1; and
[0, b]·Ga = {[0, b]} for b ∈ K, where dim([0, b]·Ga) = 0 and indeed V Ga = 〈e2〉K.
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Let K[V ] = K[X,Y ] be the associated coordinate algebra, on which t ∈ K acts
by X 7→ X and Y 7→ Y − tX. We have already shown that K[X,Y ]Ga = K[X].
Since the latter is a finitely generated K-algebra (although Ga is not reductive)
the quotient exists: Indeed, K[X,Y ]Ga being a univariate polynomial algebra
the quotient variety is V//Ga

∼= K, and its embedding into K[X,Y ] shows that
the (surjective) quotient morphism is given as π = X : V → K : [x, y] 7→ x. Note
that dim(V )− dim(V//Ga) = 1, which coincides with the maximum dimension
of a Ga-orbit occurring.

Hence for a ∈ K \ {0} the fibre π−1(a) = {[a, y] ∈ V ; y ∈ K} = [a, 0] · Ga

consists of a single Ga-orbit, which hence is closed. But the fibre π−1(0) =
{[0, y] ∈ V ; y ∈ K} = V Ga =

∐
b∈K{[0, b]} consists of infinitely many Ga-orbits,

which are all closed. In particular, π does not separate the Ga-orbits. ]

(7.2) Properties of quotients. a) We first collect some general observations:
Let G be an affine algebraic group, and let V be a G-variety. Recall that any
G-orbit O ⊆ V is open in its closure O ⊆ V , so that we have dim(O) = dim(O).

Lemma. If all G-orbits have the same dimension, then all G-orbits are closed.

Proof. Assume there are orbits O 6= O′ in V such that O′ � O, then we have

O′ ⊆ O \O, hence dim(O
′
) < dim(O), a contradiction. Hence we conclude that

all G-orbits are �-minimal, thus are all closed. ]

Proposition. The (G-invariant) subset V (≥n) := {v ∈ V ; dim(Gv) ≥ n} ⊆ V
is closed, for any n ∈ N0.

Proof. Recall first Chevalley’s Theorem on upper semicontinuity of di-
mension: Given a morphism of varieties ϕ : W → U , and for x ∈ W letting
dimx(ϕ−1(ϕ(x))) be the maximal dimension of an irreducible component of
ϕ−1(ϕ(x)) containing x, then for n ∈ N0 the set {x ∈ W ; dimx(ϕ−1(ϕ(x))) ≥
n} ⊆ W is closed. (Note that this is typically stated for W irreducible and ϕ
dominant, but the general case follows straightforwardly from this.)

Now, considering the graph morphism γ : V ×G→ V ×V : [v, g] 7→ [v, vg], we get

the closed subset V̂ := γ−1(∆(V )) = {[v, g] ∈ V ×G; vg = v} ⊆ V ×G. Letting

ν : V̂ → V be the projection onto the left hand factor, we get ν−1(ν([v, 1G])) ∼=
{v}×Gv. Since the irreducible component of the latter containing [v, 1G] equals

{v}× (Gv)
◦, from dim(G) = dim(G◦) we conclude that {[v, g] ∈ V̂ ; dim(Gv) ≥

n} ⊆ V̂ is closed. Finally, using the section morphism σ : V → V̂ : v 7→ [v, 1G]

of ν, we infer that V (≥n) = σ−1({[v, g] ∈ V̂ ; dim(Gv) ≥ n}) ⊆ V is closed. ]

In particular, if m ∈ {0, . . . ,dim(G)} is minimal such that V (≥m) 6= ∅, then the
(G-invariant) stratum V (m) := {v ∈ V ; dim(Gv) = m} = V \ V (≥m+1) ⊆ V ,
consisting of the G-orbits of maximal dimension, is open.

b) Using this, we get a dimension formula for quotients: Let V be an affine G-
variety such that K[V ]G is a finitely generated K-algebra, and let π : V → V//G
be the associated quotient.
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Proposition. Let V be irreducible. Then we have

dim(V )− dim(V//G) ≥ max{dim(O) ∈ N0;O ⊆ V G-orbit}.

Moreover, if π is geometric in the sense of (7.3) then we have equality.

Proof. By the dimension formula for morphisms, there is an open subset ∅ 6=
U ⊆ π(V ) ⊆ V//G, such that dim(V ) − dim(V//G) = dim(π−1(π(v))) for
v ∈ π−1(U) ⊆ V . Letting V (m) ⊆ V be the open stratum as above, we have
dim(π−1(π(v))) ≥ dim(vG) = dim(vG) = dim(G)−m for v ∈ V (m). Since V is
irreducible, we have π−1(U)∩V (m) 6= ∅, hence for v ∈ π−1(U)∩V (m) we obtain
dim(V )− dim(V//G) ≥ dim(G)−m = max{dim(O) ∈ N0;O ⊆ V G-orbit}.
Moreover, if v ∈ π−1(U)∩V (m) can be chosen such that π−1(π(v)) ⊆ V consists
of a single G-orbit, then we have equality dim(V )−dim(V//G) = dim(G)−m.
In particular, this condition is fulfilled if π is geometric. ]

c) Finally, we observe that quotients behave well with respect to affine open
subsets: Let π : V → V//G be a quotient as above. Given 0 6= f ∈ K[V ]G,
then Vf ⊆ V and (V//G)f ⊆ V//G are affine varieties with coordinate algebras
K[V ]f and (K[V ]G)f , respectively; moreover, Vf ⊆ V is G-invariant.

Proposition. Let V be irreducible, and 0 6= f ∈ K[V ]G. Then we have
π−1((V//G)f ) = Vf and π|Vf : Vf → (V//G)f is a quotient.

Proof. For v ∈ V with associated maximal ideal IvCK[V ], and z ∈ V//G with
associated maximal ideal Jz C K[V ]G, we have v ∈ π−1(z) if and only if Jz =
Iv∩K[V ]G. Moreover, the maximal ideals of K[V ]f and (K[V ]G)f , respectively,
can be identified by localisation with the maximal ideals of K[V ] and K[V ]G,
respectively, not containing f . Hence we have π−1((V//G)f ) = Vf , so that π
restricts to a G-equivariant morphism Vf → (V//G)f of affine varieties.

Since K[V ] is an integral domain, the associated comorphism is the natural
embedding (K[V ]G)f ⊆ K[V ]f ⊆ K(V ), where actually (K[V ]G)f ⊆ (K[V ]f )G.
If h ∈ K[V ] and i ∈ N0 such that h

fi ∈ (K[V ]f )G, then we have h
fi =

(
h
fi

)g
= hg

fi ,

that is h = hg, for g ∈ G. Hence we infer h ∈ K[V ]G, so that h
fi ∈ (K[V ]G)f . ]

(7.3) Geometric quotients. a) Let G be an affine algebraic group, let V be
an affine G-variety such that K[V ]G is a finitely generated K-algebra. and let
π : V → V//G be the associated (algebraic) quotient.

Then π is called geometric if it induces a bijection between the G-orbits in V
and the points of V//G, that is π is surjective and any fibre of π consists of a
single G-orbit. In particular, if π is geometric then all G-orbits are closed.

Proposition. Let V be irreducible and let π be geometric. Then all (closed)
G-orbits in V have one and the same dimension.
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Proof. Since the G-orbits coincide with the fibres of π, the dimension formula
for G-orbits yields dim(π−1(π(v))) = dim(vG) = dim(G)−dim(Gv), for v ∈ V .

We apply Chevalley’s Theorem on upper semicontinuity of dimension: Since
the irreducible component of π−1(π(v)) = vG containing v equals vG◦, from
dim(vG) = dim(vG◦) we conclude that V (≤n) := {v ∈ V ; dim(Gv) ≤ n} ⊆ V
is closed, for n ∈ N0. Since the subset V (≥n) ⊆ V is closed anyway, we conclude
that the stratum V (n) = V (≤n) ∩V (≥n) = {v ∈ V ; dim(Gv) = n} ⊆ V is closed.

This yields the finite decomposition V =
∐dim(G)
n=0 V (n) of V into open and closed

subsets. Since V is irreducible, and hence connected, we conclude that there is
a unique m ∈ {0, . . . ,dim(G)} such that V (m) 6= ∅, thus V = V (m) says that
for all v ∈ V we have dim(Gv) = m, or equivalently dim(vG) = dim(G)−m. ]

Example. Let G be connected, and let V be irreducible possessing a G-fixed
point v ∈ V ; note that the latter conditions are fulfilled if V is a G-module for
v := 0. Then V has a geometric quotient if and only if G acts trivially on V :

If G acts trivially on V then we have K[V ]G = K[V ], implying that idV is
a (geometric) quotient. Conversely, if V has a geometric quotient, then from
Gv = G we infer that V = V (dim(G)), thus all G-orbits are finite, and hence by
connectedness of G consist entirely of G-fixed points. ]

b) Hence the notion of geometric quotients might be too restrictive, so that the
situation might improve if we went down to suitable open subsets:

An element v ∈ V is called G-regular if there is 0 6= f ∈ K[V ]G such that
v ∈ Vf ⊆ V (n), for some n ∈ N0; in other words orbit dimension is constant on
an open neighbourhood of v ∈ V . Letting V G-reg ⊆ V be the set of G-regular

elements, we have V G-reg =
∐dim(G)
n=0 (V G-reg∩V (n)), where V G-reg∩V (n) ⊆ V is

open; in particular V G-reg ⊆ V is open. Since the stratum V (m) ⊆ V , consisting
of the G-orbits of maximal dimension, is open, we have ∅ 6= V (m) ⊆ V G-reg.

Letting v ∈ V G-reg such that there is w ∈ vG \ vG, then from dim(wG) <
dim(vG) and any open neighbourhood of w intersecting vG we infer that w 6∈
V G-reg. Hence the G-orbits in V G-reg are closed in V G-reg. Thus affine open
subsets of V G-reg should be good candidates to possess a geometric quotient.

Now let V be irreducible. Then V G-reg is dense and hence irreducible as well,
implying that V G-reg = V (m). Moreover, if 0 6= f ∈ K[V ]G such that the
quotient Vf → (V//G)f is geometric, then we have Vf ⊆ V (n), where n ∈ N0

is the common dimension of the G-orbits in Vf , and hence in this case we
necessarily Vf ⊆ V G-reg = V (m).

(7.4) Quotients for linearly reductive groups. In order to collect the
‘good’ properties of quotients in this case, we first consider the relationship
between the ideals of a coordinate algebra and the ideals of an associated in-
variant algebra. To this end, let G be an affine algebraic group and let V be an
affine G-variety such that K[V ] = soc(K[V ]), which in particular entails that the
Reynolds operator R : K[V ]→ K[V ]G exists. (For a moment we do not assume
that G is linearly reductive, and neither that K[V ]G is finitely generated.)
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Lemma. a) If IEK[V ] is G-invariant, then K[V ]G/(I ∩K[V ]G) ∼= (K[V ]/I)G.
b) If J EK[V ]G is an ideal, then we have (J ·K[V ]) ∩K[V ]G = J .
c) If {Ij EK[V ]; j ∈ J }, where J is an index set, are G-invariant ideals, then
we have (

∑
j∈J Ij) ∩K[V ]G =

∑
j∈J (Ij ∩K[V ]G) EK[V ]G.

Note that, since K[V ] is Noetherian, it follows from b) that K[V ]G is Noetherian.

Proof. a) The natural G-equivariant K-epimorphism K[V ] → K[V ]/I implies
K[V ]G/(I∩K[V ]G) = K[V ]G/IG = R(K[V ])/R(I) ∼= R(K[V ]/I) = (K[V ]/I)G.

b) Since J E K[V ]G is G-invariant, so is J · K[V ] E K[V ]. Hence we have
(J ·K[V ])∩K[V ]G = (J ·K[V ])G = R(J ·K[V ]) = J ·R(K[V ]) = J ·K[V ]G = J .

c) The ideals Ij being G-invariant, we get (
∑
j∈J Ij)∩K[V ]G = (

∑
j∈J Ij)

G =

R(
∑
j∈J Ij) =

∑
j∈J R(Ij) =

∑
j∈J I

G
j =

∑
j∈J (Ij ∩K[V ]G). ]

Theorem: ‘Good’ properties. Assume additionally that K[V ]G is finitely
generated, so that the quotient π : V → V//G exists.

a) Closedness. If W ⊆ V is a G-invariant closed subset, then the subset
π(W ) ⊆ V//G is closed as well, and π|W : W → π(W ) is a quotient.

In particular, π is surjective and V//G carries the associated quotient topology.

b) Separation. If {Wj ⊆ V ; j ∈ J } are G-invariant closed subsets, where J
is an index set, then we have π(

⋂
j∈J Wj) =

⋂
j∈J π(Wj).

In particular, for G-invariant closed subsets W,W ′ ⊆ V such that W ∩W ′ = ∅
we have π(W )∩π(W ′) = ∅; and any fibre of π contains a unique closed G-orbit.
Hence π induces a bijection between the closed G-orbits and the points of V//G.

Proof. Recall that π∗ : K[V//G] ∼= K[V ]G → K[V ] is the natural embedding.

a) Let I(W ) EK[V ] be the vanishing ideal of W ⊆ V ; hence we have K[W ] ∼=
K[V ]/I(W ). Then the vanishing ideal of π(W ) ⊆ V//G is given as I(π(W )) =
(π∗)−1(I(W )) = I(W ) ∩ K[V ]G E K[V ]G, from which we get K[π(W )] ∼=
K[V ]G/(I(W ) ∩ K[V ]G). Thus we conclude that the comorphism associated
with π|W : W → π(W ) is given as the natural embedding (π|W )∗ : K[π(W )] ∼=
K[V ]G/(I(W ) ∩K[V ]G)→ K[V ]/I(W ) ∼= K[W ].

Since W is G-invariant, the ideal I(W ) is G-invariant as well: We have fg(w) =
f(wg−1) = 0, for w ∈ W , hence fg ∈ I(W ), for f ∈ I(W ) and g ∈ G.
Thus we get K[V ]G/(I(W ) ∩ K[V ]G) ∼= (K[V ]/I(W ))G. This shows that
(π|W )∗ : (K[V ]/I(W ))G → K[V ]/I(W ), thus π|W : W → π(W ) is a quotient.

Thus to show closedness, it suffices to consider the case W = V and to show
that π is surjective: Let z ∈ V//G, with associated maximal ideal Jz CK[V ]G.
Then from (Jz ·K[V ]) ∩K[V ]G = Jz we infer that Jz ·K[V ] CK[V ] is a proper
ideal. Hence there is v ∈ V such that for the associated maximal ideal we have
Jz ·K[V ] ⊆ Iv CK[V ], thus (π∗)−1(Iv) = Iv ∩K[V ]G = Jz, that is π(v) = z.

Finally, we have to show that a subset U ⊆ V//G is open if (and only if)
π−1(U) ⊆ V is open: To this end, by going over to complements, let W ⊆ V//G
such that π−1(W ) ⊆ V is closed. Then, since π is constant on G-orbits, π−1(W )
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is G-invariant. Hence, by the closedness property and the surjectiviy of π, we
infer that W = π(π−1(W )) ⊆ V//G is closed.

b) Let Ij := I(Wj) EK[V ] be the vanishing ideal of Wj ⊆ V , for j ∈ J . Since
the Wj are G-invariant, so are W :=

⋂
j∈J Wj ⊆ V , as well as IjEK[V ] and I :=

I(W ) =
∑
j∈J IjEK[V ]. Thus, recalling that the preimage with respect to π∗ of

a radical ideal is a radical ideal again, we get π(W ) = π(W ) = V
(
(π∗)−1(I)

)
=

V
(
I∩K[V ]G

)
= V

(
(
∑
j∈J Ij)∩K[V ]G

)
= V

(∑
j∈J (Ij∩K[V ]G)

)
=
⋂
j∈J V

(
Ij∩

K[V ]G
)

=
⋂
j∈J V

(
(π∗)−1(Ij)

)
=
⋂
j∈J π(Wj) =

⋂
j∈J π(Wj).

In particular, for z ∈ V//G let W := π−1(z) ⊆ V , a G-invariant closed subset.
Hence if O ⊆W is a G-orbit, then we have O ⊆W as well, thus any �-minimal
G-orbit in O is a closed G-orbit in W . And letting O,O′ ⊆ W be closed
G-orbits, then π(O ∩O′) = π(O) ∩ π(O′) = {z} 6= ∅ implies that O = O′. ]

(7.5) Quotients for reductive groups. a) Let G be (geometrically) reduc-
tive, and let V be an affine G-variety. Then the invariant algebra K[V ]G is a
finitely generated K-algebra (where we have only proved this here for the linear
reductive case), so that the quotient π : V → V//G exists. First of all we get:

Proposition. Let W,W ′ ⊆ V be G-invariant closed subsets such that W ∩
W ′ = ∅. Then there is f ∈ K[V ]G such that f(W ) = {0} and f(W ′) = {1}. In
particular, we have π(W ) ∩ π(W ′) = ∅.

Proof. First, there is f1 ∈ K[V ] such that f1(W ) = {0} and f1(W ′) = {1}:
The embedding W

.
∪ W ′ → V entails the epimorphism K[V ] → K[W

.
∪ W ′],

hence we may assume that V = W
.
∪ W ′. Then we have I(W ) ∩ I(W ′) =

I(W ∪W ′) = I(V ) = {0} and I(W ) + I(W ′) = I(W ∩W ′) = I(∅) = K[V ],
implying K[V ] ∼= K[V ]/I(W )⊕K[V ]/I(W ′) ∼= K[W ]⊕K[W ′]. Hence may take
f1 := [0W , 1W ′ ] ∈ K[W ]⊕K[W ′].

Let U := 〈(f1)g ∈ K[V ]; g ∈ G〉K. Then, by local finiteness, U ≤ K[V ] is a
G-submodule, such that for all h ∈ U we have h(W ) = {0} and h(W ′) is a
singleton set. Let {f1, . . . , fn} ⊆ U be a K-basis, where n := dimK(U) ∈ N0

and f1 is as above. Then, by linearisation of G-actions, the evaluation map
ϕ := [f•1 , . . . , f

•
n] : V → Kn : v 7→ [f1(v), . . . , fn(v)] is a homomorphism of G-

modules. Then we have ϕ(W ) = {[0, . . . , 0]} and ϕ(W ′) = {z}, where 0 6= z ∈
Kn. Since W ′ is G-invarient, z ∈ Kn is G-invarient as well. Hence by geometric
reductivity there is a homogeneous invariant h ∈ K[X ]G of positive degree such
that h(z) = 1, thus h(0) = 0 anyway. Then f := ϕ∗(h) ∈ K[V ]G is as desired. ]

Actually, π has all ‘good’ properties of quotients listed in (7.4), but (apart
from the linearly reductive case, and the above separation property) we are not
able to prove this here; see [2, Sect.3.3]. In particular, π is surjective, π maps
closed G-invariant subsets to closed subsets, V//G carries the quotient topology
afforded by π, any fibre of π contains a unique closed G-orbit, and π induces a
bijection between the closed G-orbits and the points of V//G. This yields:

Corollary. Let O ⊆ V be a G-orbit; hence π(O) ⊆ V//G is a singleton set.
i) Then the closure O ⊆ V contains a unique closed G-orbit.
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ii) Let O be closed, and let W := π−1(π(O)) ⊆ V be the associated fibre. Then
we have W = {v ∈ V ;O ⊆ vG} = {v ∈ V ;O � vG}, and W ⊆ V is the largest
G-invariant closed subset containing O as its unique closed G-orbit.

Proof. i) Any �-minimal G-orbit in O is closed, where uniqueness follows from
O ⊆ O ⊆W := π−1(π(O)) ⊆ V .

ii) Let w ∈ W , then π(O) = π(w) = π(wG), hence π(O ∩ wG) = π(O) ∩
π(wG) 6= ∅, thus O ∩wG 6= ∅, hence O ⊆ wG. Conversely, let v ∈ V such that
O ⊆ vG, then vG ⊆ vG ⊆ π−1(π(v)) ⊆ V implies π(O)∩π(vG) = π(O∩vG) =
π(O) = π(vG) = π(v), thus v ∈W .

Moreover, W contains a unique closed G-orbit, which hence coincides with O.
Finally, let U ⊆ V be a G-invariant closed subset containing O as its unique
closed G-orbit, and assume that U 6⊆W . Then there is π(O) 6= z ∈ V//G such
that U ∩ π−1(z) 6= ∅. Since the latter set is G-invariant and closed, it contains
a closed G-orbit, which hence is distinct from O, a contradiction. ]

(7.6) The nullcone. Let G be (geometrically) reductive, and let V be a G-
module. Then the fibre N (V ) = NG(V ) := π−1(π(0)) = {v ∈ V ; 0 ∈ vG} =
{v ∈ V ; {0} � vG} ⊆ V is called the associated (Hilbert) nullcone. In can
be characterised as follows:

Let I0 C K[V ] be the maximal ideal associated with 0 ∈ V . Then the max-
imal ideal Jπ(0) C K[V ]G associated with π(0) ∈ V//G is given as Jπ(0) =
I0 ∩K[V ]G =

⊕
d∈N K[V ]Gd CK[V ]G, where the latter is the maximal homoge-

neous ideal. Hence we have π−1(π(0)) = V(Jπ(0)·K[V ]), that is the zero set of the
Hilbert ideal. In other words, we have N (V ) = V(Jπ(0)) = V(

∑
d∈N K[V ]Gd ) =⋂

d∈N V(K[V ]Gd ) ⊆ V , that is the elements of V being annihilated by all homo-
geneous invariants of positive degree.

The elements of the closed subset N (V ) are called unstable, while the elements
of the open subset V \ N (V ) are called semistable; in other words the latter
is the set of v ∈ V such that there is f ∈ K[V ]Gd , for some d ∈ N, such that
f(v) 6= 0. In particular, geometric reductivity amounts to say that the non-
zero G-fixed points in V are semistable. Letting V (m) ⊆ V be the open stratum
consisting of the G-orbits of maximal dimension, the elements of the open subset
V (m) \N (V ) are called stable; in other words, since V is irreducible, these are
the G-regular semistable elements.

The relevance of the nullcone for the structure of the invariant algebra is further
elucidated by the following:

Proposition: Hilbert [1893]. Let f1, . . . , fr ∈ K[V ]G, for r ∈ N0, such that
V(f1, . . . , fr) = N (V ). Then K[f1, . . . , fr] ⊆ K[V ]G is a finite algebra extension.

Proof. Let J := 〈f1, . . . , fr〉EK[V ]G be the ideal generated by f1, . . . , fr. Then
we have π−1(V(J)) = V(J · K[V ]) = V(f1, . . . , fr) = N (V ) = π−1(π(0)) ⊆ V .
Since π is surjective, we infer that V(J) = π(0). In other words

√
J = Jπ(0) C

K[V ]G is the maximal homogeneous ideal.

Now let h1, . . . , hs ∈ K[V ]G be homogeneous of positive degree, where s ∈ N0,
such that K[V ]G = K[h1, . . . , hs]. Hence we have hi ∈ Jπ(0), so that there is
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e ∈ N such that hei ∈ J , for i ∈ {1, . . . , s}. Thus the finite set {
∏s
i=1 h

ei
i ∈

K[V ]G; ei ∈ {0, . . . , e− 1}} generates K[V ]G as a K[f1, . . . , fr]-module. ]

In view of ??, if G is connected then it follows that K[V ]G is the integral closure
of K[f1, . . . , fr] in K[V ].

(7.7) Geometric quotients for reductive groups. Let G be (geometrically)
reductive, let V be an affine G-variety, and let π : V → V//G be the associated
quotient. The ‘good’ properties of π yield the following characterisation:

Then π is geometric if and only if all G-orbits are closed. Moreover, if V is
irreducible, then π is geometric if and only all G-orbits have the same dimension.

If π is geometric then the quotient variety V//G can be identified as topological
spaces with the orbit space of the G-action on V , where the latter carries the
quotient topology afforded by identifying points in the same G-orbit.

Example. The G-orbits in the open subset V G-reg ⊆ V of G-regular elements
are closed in V G-reg. Thus if V G-reg is affine again then it possesses a geometric
quotient. But if V G-reg contains a G-orbit which is not closed in V , then it is
not the preimage with respect to π of an (open) subset of V//G.

Similarly, letting V (m) ⊆ V G-reg ⊆ V be the open stratum consisting of the
G-orbits of maximal dimension, the latter are closed in V (m). Thus if V (m) is
affine again then it possesses a geometric quotient. But if V (m) contains a G-
orbit which is not closed in V , then it is not the preimage with respect to π of an
(open) subset of V//G. Recall that V (m) = V G-reg whenever V is irreducible.

Instead, we consider Ṽ := {v ∈ V (m); vG ⊆ V closed} ⊆ V , that is the union

of the closed G-orbits amongst all G-orbits of maximal dimension; hence Ṽ is
G-invariant, but possibly Ṽ is empty. Moreover, let Z̃ := (V//G)\π(V \V (m)).
Since V \V (m) ⊆ V is a G-invariant closed subset, π(V \V (m)) ⊆ V//G is closed

as well, hence Z̃ ⊆ V//G is open. Now Ṽ and Z̃ are related as follows:

For v ∈ Ṽ we have vG = vG ⊆ V (m), hence vG ∩ (V \ V (m)) = ∅ implies

that π(vG) ∩ π(V \ V (m)) = ∅, that is π(v) ∈ Z̃. Next, for v ∈ V \ V (m) by

construction we have π(v) 6∈ Z̃. Finally, for v ∈ V such that vG 6= vG, letting
w ∈ vG \ vG we have dim(wG) < dim(vG), hence w ∈ V \V (m), entailing that

π(v) = π(w) 6∈ Z̃. Thus we conclude that π(v) ∈ Z̃ if and only if v ∈ Ṽ , that is

π−1(Z̃) = Ṽ . In particular, it follows that Ṽ ⊆ V (m) ⊆ V is open.

Moreover, π|Ṽ : Ṽ → Z̃ induces a bijection between the (closed) G-orbits in Ṽ

and the points of Z̃. Since the affine variety V//G carries the quotient topology

induced by π, we conclude that Z̃ is the orbit space of the G-action on Ṽ . Thus,
if Ṽ is affine again, then it has a (geometric) quotient, which hence coincides

with π|Ṽ ; in particular, this happens if Ṽ ⊆ V is a principal open subset.

Example. Slightly changing notation, let G be an affine algebraic group, and
let H ≤ G be a closed subgroup. Then G is an H-variety with respect to the
left translation action G×H→ G : [g, h] 7→ h−1g. The set of H-orbits coincides
with the set H\G of right H-cosets in G. Since H ≤ G is closed, and G acts by
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automorphisms of varieties on itself, we infer that the coset Hg ⊆ G is closed
as well, and isomorphic as varieties to H. Hence we conclude that all H-orbits
on G are closed, and have one and the same dimension.

Now let H additionally be (geometrically) reductive. Then we conclude that
the quotient variety of the left translation action of H on G can be identified
with the orbit space H\G, such that the map π : G → H\G : g 7→ Hg is the
associated (geometric) quotient. In particular, the orbit space H\G carries the
sructure of an affine variety. (Actually, if G is reductive then the converse holds
as well, saying that if the orbit space H\G carries the structure of an affine
variety then H necessarily is reductive; but we are not able to prove this here.)

If HEG is a (geometrically) reductive closed normal subgroup, the orbit space
G/H = H\G is an affine variety as well, and thus naturally becomes an affine
algebraic group such that the natural map π : G → G/H is a homomorphism
of algebraic groups. For example, this happens if G is reductive and H E G is
a closed normal subgroup: From R(H) E H being characteristic we infer that
R(H) ≤ R(G), thus H is reductive as well. (Actually, the assumption of H
being reductive can be dispensed of, but we are not able to prove this here.)

(7.8) Finite groups. t.b.c.

Example. Let char(K) = p > 0, the cyclic group G = 〈g〉 ∼= Cp of order

p acts on V := K2 via g 7→ J :=

[
1 1
0 1

]
, that is g acts on V by [x, y] 7→

[x, y + x], for x, y ∈ K. Thus the G-orbits in V are non-uniquely given as
[a, b] · G = {[a, b + ia] ∈ V ; i ∈ {0, . . . , p − 1}} for a ∈ K \ {0} and b ∈ K, and
[0, b] ·G = {[0, b]} for b ∈ K; recall that indeed V G = 〈e2〉K.

Let K[V ] = K[X,Y ] be the associated coordinate algebra, on which g acts
by X 7→ X and Y 7→ Y − X. We have already shown that the invariant
algebra K[X,Y ]G = K[X,Y p − Y Xp−1] is a polynomial algebra. Hence the
quotient variety is V//G ∼= K2, and its embedding into K[X,Y ] shows that the
(surjective) quotient morphism is given as π : V → K2 : [x, y] 7→ [x, yp − yxp−1].

Hence for β ∈ K we get π−1([0, β]) = {[0, y] ∈ V ; yp = β} = {[0, β
1
p ]}. More-

over, for a ∈ K\{0} and β ∈ K we get π−1([a, β]) = {[a, y] ∈ V ; yp−yap−1 = β},
where since Y p−ap−1Y −β ∈ K[Y ] has non-zero constant derivative we conclude
that there are p pairwise distinct roots in K, showing that π−1([a, β]) consists of
a single G-orbit; indeed for y, z ∈ K, recalling that yp−yap−1 = ap

(
(ya )p− y

a

)
=

ap ·
∏p−1
i=0 (ya − i) =

∏p−1
i=0 (y− ia), we get yp − yap−1 = zp − zap−1 if and only if

(y − z)p − (y − z)ap−1 = 0, if and only if y − z = ia for some i ∈ {0, . . . , p− 1}.

(7.9) Example. We now consider a couple of reductive examples: Recall that
GLn and SLn, for n ∈ N, are reductive, hence are linearly reductive if char(K) =
0.

Firstly, letting char(K) 6= 2, let V := K[X1, . . . , Xn]2 be the K-vector space of
n-ary quadratic forms, being an SLn-variety via base change. Then by (0.3) we
have K[V]SLn = K[∆], where ∆ ∈ K[V] is the discriminant.

We show that K[∆] is a univariate polynomial algebra: Let s : K→ V : δ 7→ qn,δ,
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where qn,δ := δX2
n +

∑n−1
i=1 X

2
i ∈ V, with associated comorphism s∗ : K[V] →

K[T ]. Then we have s∗(∆)(δ) = ∆(s(δ)) = ∆(qn,δ) = δ for δ ∈ K, thus
s∗(∆) = T . This shows that ∆ ∈ K[V] is algebraically independent.

Hence the quotient exists (without referring to the reductivity of SLn), the
quotient variety is V//SLn ∼= K, and the (surjective) quotient morphism is
given as ∆: V → K; note that dim(V)− dim(V//SLn) = (n+ 1)− 1 = n.

We have already seen that for δ ∈ K \ {0} the fibre ∆−1(δ) = [qn,δ] consists of

a single SLn-orbit, which hence is closed. But the fibre ∆−1(0) =
∐n−1
r=0 [qr],

where qr :=
∑r
i=1X

2
i ∈ V, consists of finitely many SLn-orbits, where [q0] �

[q1] � · · · � [qn−1] and thus only [q0] is closed. In particular, ∆ separates the
SLn-orbits if and only if n = 1, where SL1 = {1} anyway.

(7.10) Example. Secondly, letting K be arbitrary, we consider M := Kn×n,
being a GLn-variety via conjugation. Then by (3.4) we have K[M]GLn =
K[ε1, . . . , εn], where the regular maps εi : M→ K are given as the coefficients of
the characteristic polynomial χ(A) := det(XEn−A) = Xn+

∑n
i=1(−1)iεi(A)Xn−i ∈

K[X] of A ∈ M, so that εi(A) coincides with the i-th elementary symmetric
polynomial in the eigenvalues of A. We show that K[ε1, . . . , εn] is a polynomial
algebra:

To this end we consider the morphisms ε : M→ Kn : A 7→ [ε1(A), . . . , εn(A)] and
σ : Kn → M : [x1, . . . , xn] 7→ diag[x1, . . . , xn]. Then the morphism σε : Kn →
Kn : [x1, . . . , xn] 7→ [ε1(x1, . . . , xn), . . . , εn(x1, . . . , xn)] yields the comorphism
(σε)∗ : K[X ] → K[X ] : Xi 7→ εi(X ), where X := {X1, . . . , Xn}. It is well-known
that the elementary symmetric polynomials {ε1(X ), . . . , εn(X )} ⊆ K[X ] are al-
gebraically independent, hence (σε)∗ is injective. From (σε)∗ = ε∗σ∗ we con-
clude that the comorphism ε∗ : K[X ] → K[M] : Xi 7→ εi is a injective as well,
hence {ε1, . . . , εn} ⊆ K[M] is algebraically independent.

Hence the quotient exists (without referring to the reductivity of GLn), the
quotient variety is M//GLn ∼= Kn, and the (surjective) quotient morphism is
given as ε : M→ Kn; note that dim(M)−dim(M//GLn) = n2−n = n(n− 1).

We have already seen that for x ∈ Kn the fibre ε−1(x) ⊆ M, that is the set of
all matrices having one and the same characteristic polynomial with coefficients
given by x, consists of finitely many GLn-orbits, amongst which precisely the
unique semisimple GLn-orbit is closed; the fibre ε−1(0) = N ⊆ M consists of
the nilpotent matrices. In particular, ε separates the GLn-orbits if and only if
n = 1, where GL1 = Gm.
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