Übungen zur Vorlesung Geometrische Invariantentheorie (WS 19/20)

PD Dr. Jürgen Müller Abgabe bis: 28.01.2020

(12.1) Aufgabe: Quadratische Formen.

Es sei \mathbb{K} ein algebraisch abgeschlossener Körper mit char $(\mathbb{K}) \neq 2$, und für $n \in \mathbb{N}$ seien $\mathcal{V} := \mathbb{K}[X_1, \dots, X_n]_2$ die Menge der n-ären quadratischen Formen über \mathbb{K} , sowie $\mathbb{K}[\mathcal{V}]$ die zugehörige Koordinatenalgebra und $\Delta \in \mathbb{K}[\mathcal{V}]$ die Diskriminante. a) Man zeige: Die Teilmenge $\mathcal{U} := \mathcal{V} \setminus \Delta^{-1}(0)$ ist eine affine \mathbb{SL}_n -Varietät mit Koordinatenalgebra $\mathbb{K}[\mathcal{U}] = \mathbb{K}[\mathcal{V}]_{\Delta}$ sowie Invariantenalgebra $\mathbb{K}[\mathcal{U}]^{\mathbb{SL}_n} = \mathbb{K}[\Delta]_{\Delta}$, und $\Delta \colon \mathcal{U} \to (\mathbb{K} \setminus \{0\})$ ist ein geometrischer Quotient. Man bestimme die Di-

und $\Delta: \mathcal{U} \to (\mathbb{K} \setminus \{0\})$ ist ein geometrischer Quotient. Man bestimme die imension der \mathbb{SL}_n -Bahnen in \mathcal{U} und zugehörige Isotropiegruppen.

b) Nun betrachte man \mathcal{V} unter \mathbb{GL}_n -Operation. Man bestimme die zugehörigen Bahnen und die \preceq -Relation. Außerdem zeige man, daß $\mathbb{K}[\mathcal{V}]^{\mathbb{GL}_n} = \mathbb{K}$ gilt, und bestimme den zugehörigen Quotienten. Ist er geometrisch?

(12.2) Aufgabe: Matrixäquivalenz.

Es seien \mathbb{K} ein algebraisch abgeschlossener Körper und $\mathcal{M} := \mathbb{K}^{n \times n}$, für $n \in \mathbb{N}$, mit der durch Konjugation gegebenen \mathbb{GL}_n -Operation; dann ist $\mathbb{K}[\mathcal{M}]^{\mathbb{GL}_n} = \mathbb{K}[\epsilon_1, \ldots, \epsilon_n]$, mit den 'elementar-symmetrischen' Funktionen $\epsilon_i \in \mathbb{K}[\mathcal{M}]_i$, und $\epsilon \colon \mathcal{M} \to \mathbb{K}^n$ sei der zugehörige Quotient.

- a) Man zeige, daß $\mathbb{K}[\mathcal{M}]^{\mathbb{SL}_n} = \mathbb{K}[\mathcal{M}]^{\mathbb{GL}_n}$ gilt; also ist ϵ auch der \mathbb{SL}_n -Quotient. Ist ϵ als solcher geometrisch?
- b) Nun sei $\Delta \colon \mathcal{M} \to \mathbb{K} \colon A \mapsto \operatorname{disc}(\chi_A)$ die Diskriminantenfunktion, wobei χ_A das charakteristische Polynom von A und disc die übliche Diskriminante seien. Man zeige: Es ist Δ eine \mathbb{GL}_n -invariante reguläre Abbildung, also ist $\Delta \in \mathbb{K}[\mathcal{M}]^{\mathbb{GL}_n}$. Für $n \leq 2$ schreibe man Δ als Polynom in $\{\epsilon_1, \ldots, \epsilon_n\}$; siehe auch Aufgaben (4.1) und (4.2).
- c) Man zeige, daß die Teilmenge $\mathcal{S} := \mathcal{M} \setminus \Delta^{-1}(0)$ eine affine \mathbb{GL}_n -Varietät ist, die aus (gewissen) diagonalisierbaren Matrizen besteht. Außerdem zeige man, daß $\mathbb{K}[\mathcal{S}] = \mathbb{K}[\mathcal{M}]_{\Delta}$ und $\mathbb{K}[\mathcal{S}]^{\mathbb{GL}_n} = \mathbb{K}[\epsilon_1, \dots, \epsilon_n]_{\Delta}$ gelten. Man gebe den zugehörigen Quotienten an, und zeige, daß er geometrisch ist. Man bestimme die Dimension der \mathbb{GL}_n -Bahnen in \mathcal{S} und zugehörige Isotropiegruppen.

(12.3) Aufgabe: Vektorinvarianten.

Es seien \mathbb{K} ein algebraisch abgeschlossener Körper mit $\operatorname{char}(\mathbb{K}) \neq 2$, und G :=

- $\langle g \rangle \cong C_2$, die via $g \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ auf $V := \mathbb{K}^2$ operiere. Man betrachte $W := V \oplus V$.
- a) Es sei $\mathbb{K}[W] \cong \mathbb{K}[V] \otimes_{\mathbb{K}} \mathbb{K}[V] \cong \mathbb{K}[X_1, X_2, Y_1, Y_2]$, wobei $X_{1,2}$ und $Y_{1,2}$ die Koordinatenfunktionen auf dem linken bzw. rechten Summanden sind. Wie operiert G auf $\mathbb{K}[V]$ und $\mathbb{K}[W]$? Welche Bahnen hat G auf V und W?

- b) Es seien $e_1 = X_1 + X_2$ und $e_2 = X_1X_2$, sowie $f_1 = Y_1 + Y_2$ und $f_2 = Y_1Y_2$, und außerdem $g_2 := X_1Y_1 + X_2Y_2$ sowie $h_2 := X_1Y_2 + X_2Y_1$. Man zeige, daß $\mathbb{K}[V]^G = \mathbb{K}[e_1, e_2]$ und $\mathbb{K}[W]^G = \mathbb{K}[e_1, e_2, f_1, f_2, g_2, h_2]$ gelten.
 c) Es sei $P := \mathbb{K}[V]^G \otimes_{\mathbb{K}} \mathbb{K}[V]^G \subseteq \mathbb{K}[W]^G$. Man zeige, daß $\mathbb{K}[W]^G = P[d_2] \subseteq \mathbb{K}[W]$ ist, wobei $d_2 := g_2 h_2$ ein normiertes irreduzibles rein-quadratisches Polynom $\delta \in P[T]$ erfüllt. Daraus folgere man, daß $P \subseteq \mathbb{K}[W]^G$ eine Noether-Normalisierung ist, und daß $\mathbb{K}[W]^G$ ein freier P-Modul vom Rang 2 ist.
- d) Man zeige, daß der (geometrische) Quotient W/G eine Hyperfläche in \mathbb{K}^5 ist, die einen natürlichen Epimorphismus auf \mathbb{K}^4 hat, dessen Fasern aus höchstens zwei Punkten bestehen.