Übungen zur Vorlesung Elementare Zahlentheorie (SS 18)

PD Dr. Jürgen Müller

(3.1) Aufgabe: Primzahlen.

Es seien $1 \neq a \in \mathbb{N}$ und $k \in \mathbb{N}$. Man zeige:

a) Ist a^k-1 prim, so ist a=2 und k prim. Ist umgekehrt $2^p-1\in\mathbb{Z}$ prim, wenn $p\in\mathcal{P}$ prim ist?

Bemerkung: Primzahlen der Form $2^p - 1$ heißen Mersenne-Primzahlen.

b) Ist $2^k + 1$ prim, so ist $k = 2^n$ für ein $n \in \mathbb{N}_0$. Ist umgekehrt $2^{2^n} + 1 \in \mathbb{Z}$ stets prim?

Bemerkung: Primzahlen der Form $2^{2^n} + 1$ heißen Fermat-Primzahlen.

(3.2) Aufgabe: Monotonie der Gradabbildung.

Es sei R ein Integritätsring und $\delta': R \setminus \{0\} \to \mathbb{N}_0$ eine Abbildung, welche die Bedingung **i)** aus der in der Vorlesung gegebenen Definition eines euklidischen Rings erfüllt. Zeigen Sie, daß die Abbildung

$$\delta: R \setminus \{0\} \to \mathbb{N}_0, \quad a \mapsto \min\{\delta'(b) \mid b \in R \setminus \{0\} \quad \text{und} \quad a \mid b\}$$

beide Bedingungen aus dieser Definition erfüllt.

(3.3) Aufgabe: Laufzeit des erweiterten euklidischen Algorithmus.

Die Fibonacci-Folge $\{F_n\mid n\in\mathbb{N}\}$ ist die Folge mit $F_1=F_2=1$ und $F_n=F_{n-1}+F_{n-2}$, für alle $n\geq 3$.

a) Zeigen Sie, daß

$$\mathbf{F}_n = \frac{\tau^n - (\tau')^n}{\sqrt{5}} = \lfloor \frac{\tau^n}{\sqrt{5}} + \frac{1}{2} \rfloor,$$

wobei $\tau=\frac{1+\sqrt{5}}{2},\tau'=\frac{1-\sqrt{5}}{2}$ und $\lfloor x\rfloor$ der ganzzahlige Teil von $x\in\mathbb{R}$ ist.

- **b)** Seien nun $a,b \in \mathbb{N}$ mit a > b, so daß der erweiterte euklidische Algorithmus l-1 Divisionen benötigt. Zeigen Sie, daß $a_1 \geq F_l$ ist.
- c) Folgern Sie, daß $l \leq \log_{\tau}((a_1 + \frac{1}{2}) \cdot \sqrt{5})$.

(3.4) Aufgabe: Erweiterter euklidischer Algorithmus.

Bestimmen Sie $x, y \in \mathbb{Z}$, so daß $xa + yb = \operatorname{ggT}_+(a, b)$, für

- a) $(a,b) = (2^{10} 1, 2^4 1).$
- **b)** $(a,b) = (2^{16} + 1, 2^8 + 1).$

Abgabe: 3.05.2018 (Donnerstag), bis 10:00 Uhr.